

TIP Data Base Interface II Reference

IP-634

This edition applies to TIP/ix & TIP/dbi II 2.5 and revision levels of TIP/ix 2.5
until otherwise indicated in a new edition. Publications can be requested from
the address given below.

Inglenet Business Solutions Inc reserves the right to modify or revise this
document without notice. Except where a Software Usage Agreement has
been executed, no contractual obligation between Inglenet Business Solutions
Inc. and the recipient is either expressed or implied.

It is agreed and understood that the information contained herein is
Proprietary and Confidential and that the recipient shall take all necessary
precautions to ensure the confidentiality thereof.

If you have a license agreement for TIP Studio or TIP/ix with Inglenet
Business Solutions Inc., you may make copies of this documentation for
internal use. Otherwise, you may not copy or transmit this document, in whole
or in part, in any form or by any means, electronic, mechanical, photocopying,
or otherwise, without the prior written permission of Inglenet Business
Solutions Inc.

Inglenet Business Solutions Inc.
Website: http://www.inglenet.com
Help Desk: helpdesk@inglenet.com

TIP Studio, TIP/ix, and TIP/30, and are registered trademarks of Inglenet
Business Solutions Inc.:

This documentation occasionally makes reference to the products of other
corporations. These product names may be trademarks, registered or
otherwise, or service marks of these corporations. Where this is the case, they
are hereby acknowledged as such by Inglenet Business Solutions Inc.

This document is valid for TIP/ix version 2018/08/04 2.5 R0 - 0360 or later.

© Inglenet Business Solutions Inc., 1991-2019

http://www.inglenet.com/

 Introduction

 TIP/dbi II i

Contents

Introduction ... 5

Product Requirements .. 5

Overview .. 5

SQL Update Consideration ... 6

Environment variables .. 7

Schema compiler .. 10

Additional SCHEMA clauses .. 12

Database key ... 22

Area definition ... 22

Record definition ... 23

Use of RAW ... 24

REDEFINES Clause .. 25

Naming indexes for a Record .. 26

Date format .. 26

UCSTDATE format .. 27

Clustering records ... 28

Multiple Area records .. 28

Set definition ... 29

Subschema compiler ... 30

DML pre-processor ... 31

Application interface modules 35

Batch interface for DMS .. 35

Batch interface for Indexed Files 35

TIPIXDMS - transaction program interface 36

TIPFCS interface ... 37

Defining a MIRAM Schema ... 37

Defining a Table to TIPFCS .. 37

Generate a MIRAM Schema from Oracle 37

TIPFCS Relative Record Number and Oracle 38

Database Password Encryption – dbipwd 40

Using the Database Interface 41

TIP DataBase Interface Reference

ii TIP/dbi II IP-634

Performance Considerations 42

Database configuration .. 42

Block Size .. 42

DB_INIT Parameters ... 43

Default TIP/dbi user id/password 43

Folding Tables ... 43

DML_LOCKS ... 44

TIP/dbi SCHEMA source parameters 44

Placement of Index and Data .. 44

CLUSTER .. 45

TIP/dbi Environment Variables 45

Use of TIPDMSCOMMIT ... 45

TIPDMSLOG ... 45

TIPFCS Relational database access 46

Generating Database Interface 47

Database unload/reload ... 48

DBIBLDUL options .. 48

DBIBLDUL operation ... 50

Multi-record sets .. 51

Sorted sets .. 51

Ordered sets .. 52

Data reformatting ... 53

DBIRELOAD Utility .. 53

DBKEY work file .. 54

Unload/Reload Example.. 54

Indexed File interface ... 57

Defining an MSAM/ISAM Schema 57

Loading ISAM/Sequential data file to database 59

Defining a Table to TIPFCS .. 59

TIP/ix fopen command .. 60

Generate an ISAM Schema from Oracle/SQL 61

TIPFCS relative record number & Oracle.......................... 62

TIP/dbi batch interface to Micro Focus Cobol 64

Batch WHERE & ORDER BY clauses 65

Batch SELECT column list .. 66

Online transaction WHERE & ORDER BY clauses 67

 Introduction

 TIP/dbi II iii

Online transaction SELECT column list 68

TIP/dbi ODBC interface .. 69

ODBC Interactive utility ... 70

MySQL Support ... 70

Sample DMS schema ... 71

DMS/2200 sample Schema ... 71

SQL schema .. 77

Data Mapping rules ... 88

Data Mapping REDEFINES .. 89

Sample Data Mapping rules .. 90

Upgrading from old TIP/dbi 99

Unload/Reload ... 99

Keep existing database .. 100

DBIUPGRADE ... 100

TIP/dbi database maintenance 101

Updating the Schema definition 101

Example Schema Change Procedures 102

 Introduction

 TIP/dbi II 5

Introduction

TIP/dbi is a sub-system of TIP/ix that enables access data stored in a
relational database. It provides a compatible API to DMS/2200 and DMS/80.
TIP/dbi is not identical to DMS, but comes very close in functionality with a few
limitations. It also enables TIP/ix to access regular database tables as well as
indexed data files that are emulated with relational database tables.

Product Requirements

The TIP/dbi II product requires:

 TIP/ix 2.5 R0 – 0360 or higher

 A supported relational database, Oracle, MySQL or MS SQL Server

 An Oracle relational database product. See the Release Notes for
a list of the supported database products, or contact the Inglenet
sales department for current platform support information.
Installation and tuning of the RDBMS is the customer's
responsibility.

 For using MySQL, you should configure MySQL to default to use
the Innodb database engine.

 For accessing MS SQL server, ODBC 3.5 compliant drivers are
required. ODBC drivers are available from Easysoft
(www.easysoft.com)

Overview

For TIP/dbi to access database tables, it needs to know about the structure of
the data. It gets this information from either the DMS schema definition, or a
manually produced pseudo-schema derived from the database table
definitions or built from COBOL copybooks.

You process this schema with the dbischema utility to generate the required
IO-modules, and to produce the required target SQL (that is, a .ddl file for
Oracle) to generate all tables and indexes.

You pre-process your DMS COBOL application programs with the dbipre
utility (much as they were pre-processed on your mainframe). TIP/dbi accepts
the same data manipulation language statements and returns the same status
codes as the mainframe database did. The DMCA contains the same data
field names, but the format is not exactly the same.

http://www.easysoft.com/

TIP DataBase Interface Reference

6 TIP/dbi II IP-634

To emulate indexed data, or to get access to regular tables, you create a DMS
style schema definition (the pseudo-schema). This pseudo-schema must
define the records as both LOCATION MODE INDEXED SEQUENTIAL and
WITHIN AREA MIRAM. You can use COPY statements to pull in existing
record structure definitions.

SQL Update Consideration

Be very careful if you use SQL to add records to a TIP/dbi DMS database.

In DMS the system maintains the “set” relationship between record types
using an elaborate system of “pointers”. Normally, even a database
administrator would not manipulate these “pointers” at all, or if absolutely
necessary, with extreme caution.

Once your DMS database has been converted to Oracle, TIP/dbi maintains
these “pointers” as columns or tables in the database. Using SQL for read
only access against a TIP/dbi controlled database is perfectly safe. However,
using SQL to update a TIP/dbi controlled database could cause severe data
corruption if the pointer structure is violated.

To successfully perform this kind of updating, you must understand the way in
which TIP/dbi maintains the “pointers”, to provide the required set
relationships required for DMS programs. Failure to properly update the
“pointers” at the same time as the data could render the database useless.

To update a DMS database that has been converted to TIP/dbi, Inglenet
recommends that you use our TQL query product, or a COBOL program that
calls TIP/dbi.

This warning does not apply to a TIP/dbi database built from a MIRAM or
MSAM file. They have no internal set “pointers” to corrupt and therefore, you
can use SQL to read or write against the converted database.

 Introduction

 TIP/dbi II 7

Environment variables

Several programs (including the utilities dbipre, dbischema and I/O modules)
test for environment variables to control their operation. These environment
variables can be used in the users or developers environment. It is also
strongly recommended that these variables are added to the TIP/ix
configuration file, $TIPROOT/conf/tipix.conf. For details on how to do this, see
the TIP/ix Installation and Operation manual.

Variable Description Used by Values

TIPDMS

Directory where the compiled
database definition is stored.
The defaults is:
$TIPROOT/tipfiles/DMS

dbischema,
I/O module,
TIP/ix

TIPDMSLOG

Amount of log information to
generate

Example:

TIPDMSLOG=akqs,o=/tmp/di
r/dbilog,3M
This would re-direct the
TIP/dbi log to the file called
"dbilog" in the"tmp/dir"
directory and limit its size to 3
MB. Once it reaches its
maximum size of 3 MB, it
starts over-writing at the top
in a wrap-around fashion.

Note: The default behavior of
TIP/dbi (i.e. without 'o' option)
is to generate the log files in
the directory where the
program is run from.

The log times in TIP/dbi logs
are prefixed with A or B.
Having A and B in the same
log file means the logfile has
wrapped around. When you
look at a log, if the first line
starts with A and you want to
find the end of the log, just
search for a B at the
beginning of the line. In UNIX
vi, that is /^B

I/O module

’c’ -
commands
‘s’ - statistics
only
‘d’ - log
details
‘a’ - all of
above
‘k’ - retain
log file
‘#M’ -
specify size
of log file.
(e.g. 1M=1
Megabyte)
‘o’ - specify
output
directory
and filename
for logfile
(Note: This
setting re-
directs all
TIP/dbi logs
to a single
file)
‘q’ - log SQL

TIPDMSCOMMIT=n Specify the interval n of calls
to TIP/dbi after which an

I/O module Integers.

TIP DataBase Interface Reference

8 TIP/dbi II IP-634

Variable Description Used by Values

automatic COMMIT will be
issued.
If this is used, a COMMIT is
issued without regard to any
application grouping of
updates into transactions.

ORACLE_UID

Oracle user id to be used to
connect to Oracle.
When the TIP/dbi interface is
generated by the program
schema, the settings of the
Oracle variables are stored in
the generated routines (as
default values).
If schema_PWD,
schema_UID and
schema_SID are set when
TIP/dbi actually connects to
Oracle, it uses their values.
If not, TIP/dbi then checks if
ORACLE_PWD,
ORACLE_UID,
ORACLE_SID are set, and if
set, uses their values.
If neither schema nor
ORACLE variables are set,
TIP/dbi sets them to the
values that were present
when the schema program
was run.

Schema
I/O module

ORACLE_PWD
Oracle user password to be
used

schema
I/O module

ORACLE_SID Oracle database system ID
schema
I/O module

schema_SID

Oracle database system ID.
Where ‘schema’ is the
‘schema name’ as defined to
TIP/dbi dbischema compiler

I/O module

schema_TRC
Turn on the Oracle trace
option

I/O module

schema_UID Oracle user id to be used I/O module

schema_PWD
Oracle user password to be
used.

I/O module

 Introduction

 TIP/dbi II 9

Variable Description Used by Values

schema_CON

The complete connect string
required for the database. If
this is present, it is used
instead of the _UID, _PWD,
_SID values

I/O module

schema_DSN
Defines the Data Set Name
to be used to connect to an
ODBC database connection

I/O module
Should
match
odbc.ini

schema_ROWS

Defines how many rows of
data to read as an ‘array
fetch’ for ISAM type records
when using ODBC databases
like MySQL and MS SQL
Server

I/O module

If you use
this keep the
number
more than 2
and less
than 5

schema_TOP

Defines a limit on how many
rows the database should
place into a result set. This if
for ODBC daabases like
MySQL and MS SQL server

I/O module

ORACLE_HOME

Oracle home directory
If ORACLE_HOME is not set
at execution, TIP/dbi sets it to
the value that was present
when the schema program
was run.

I/O module

OUTDIR
Default directory to generate
output files

dbitosch
dbipre

COBCPY
Define search path for COPY
books

dbischema

TIP DataBase Interface Reference

10 TIP/dbi II IP-634

Schema compiler

The program dbischema reads both DMS/80 and DMS/2200 schema and
sub-schema source. The result of the compilation procedure is to produce
dictionary file called schemaname.sym. This dictionary file is created in a
private directory.

The base directory is $TIPROOT/tipfiles.DMS/ or the value of the
environment variable TIPDMS. The base dictionary directory then becomes
$TIPDMS/schemaname.dd3/.

For example, if TIPDMS is “/u/rjn/dms” and we compile a schema called
SPSCHM then a directory “/u/rjn/dms/spschm.dd3” is created as the dictionary
for this schema. A file called spschm.sym is created which holds the entire
database structure and all of the record definitions.

The schema compiler will then emit a schema definition for the target
database.

The command line for dbischema may have some options specified and the
file name to be compiled. The compiler will figure out whether the input file is
DMS/80 or DMS/2200 and if it is a schema or sub-schema. The other possible
command line options follow.

Option Description Default

-T target
target database (oracle8, oracle9,
oracle10, sql2005, mysql, odbc)

For version of Oracle
installed on system.

If using Microsoft SQL
Server 2005 (or later)
or any other ODBC
database you will also
need ODBC drivers
and likely unixODBC
driver manager.

See:
www.easysoft.com

-w print more warning messages No

-o
Compile schema to be compatible
with the older version of TIP/dbi

http://www.easysoft.com/

 Schema compiler

 TIP/dbi II 11

If the module being compiled is a schema, then under the dictionary base
directory the following files may be created where schema is the database
schema name.

File Description

schema.ddl SQL schema definition to create all tables

schema.delete
SQL statements to delete all rows from every
table

schema.drop SQL statements to drop all tables

schema.sym symbol table and database structure

schema.views SQL views of folded records. See the -f option.

schema.map Data-mapping rules file

sqlplans.txt Database cross reference listing

dictionary.exp
Symbolic dictionary for database access. This is
the file which is loaded at run-time by Tip/dbi.

If the module being compiled is a sub-schema, then under the dictionary base
directory another directory is created with the same name as the sub-schema.
For example, if the sub-schema SPSUBS of SPSCHM is compiled then a
directory of /u/rjn/dms/spschm.dd3/spsubs is created as the sub-schema
base directory. This directory then holds several files which are used by the
pre-processor program dbipre.

File Contents

subschemaname.sym
modified symbol table indicating which records
and sets are included.

areas table of areas included

copy.ls
pre-processor COPY book for LINKAGE
SECTION

copy.ws
pre-processor COPY book for WORKING-
STORAGE SECTION

dbdn DMS/2200 table of database data names

records table of record names included

sets table of sets included

tables constant tables for WORKING-STORAGE

TIP DataBase Interface Reference

12 TIP/dbi II IP-634

Additional SCHEMA clauses

A few additional schema definition clauses have been added which the
TIP/dbi schema compiler accepts.

At the beginning of the schema definition module the following clauses may be
optionally specified following the SCHEMA NAME IS clause. If the keyword
NO precedes any of these clauses then the option is not selected. Options
which may or may not be negated are shown below with [NO].

Clause Description

[NO] ALLOW ANYCHARDATA
To accept any hex value for PIC X fields.
Normally DBI validates the data based on the
local language setting. (see LANG env var)

[NO] ALLOW ANYKEYDATA To accept arbitrary values for keys to select on.

[NO] ALLOW CRLF

Tells TIP/dbi to retain in PIC X fields the ASCII
print/carriage control codes TAB, BS, CR, LF,
FF. Normally these would be translated to a
space and an error message logged.

ALLOW NO FOLD

declares that dbischema should never try to
combine fields of an OCCURS into a single
SQL column. The default is to combine the
fields if they are all display data and the total
length is less than 20 bytes.

[NO] CLUSTER ALL
Cluster where possible records and set
indexes.

[NO] FOLD ALL

Compact many COBOL data items into SQL
CHAR columns. This may improve
performance, but the resulting SQL database is
not very usable outside of TIP/dbi. Do this for
all records.

Default NO.

[NO] GENERATE CONSTRAINTS
Generate referential integrity constraints.

Default is to have constraints.

[NO] IBMCOMP
COMP-4 & BINARY fields are round up to size
of 2, 4 & 8 bytes. Default Yes for OS3/DMS80
schema. Default NO for DMS2200 schema.

[NO] LOW-VALUES ARE NULL
any field with all LOW-VALUES will result in the
corresponding column being set to NULL.
Default is ARE NULL.

[NO] LOW-VALUES REJECT To cause even low-values to be treated as bad

 Schema compiler

 TIP/dbi II 13

Clause Description

data. Default is to accept.

[NO] NUMERIC IS CHAR

Normally PIC 9 fields are stored in a manner
that easily allows numeric manipulation form
SQL. If this option is specified then all PIC 9
DISPLAY fields in every record are treated just
like PIC X fields. This reduces the storage
requirements within SQL by 1 or 2 bytes per
field. Default is NO.

[NO] NUMERIC SPACES IS
NULL

If a PIC 9 DISPLAY field contains all SPACES,
then the SQL column will be marked as NULL.
Likewise when reading a table, if the column
was marked NULL, then the field in the COBOL
record area will be set to all SPACES. Default
NO.

[NO] SPACEOUT CRLF
Tells TIP/dbi to change to a SPACE in PIC X
fields the ASCII print/carriage control codes
TAB, BS, CR, LF, FF.

[NO] TRIM NAMES

To get column names shorter. This will remove
common prefixes and suffixes from the COBOL
field names as well as all dashes. Default
action is TRIM.

[NO] TRIM NAMES-

To get column names shorter but leave ‘-‘ in
name as an underscore. This will remove
common prefixes and suffixes from the COBOL
field names as well as all dashes. Default
action is NO TRIM NAMES-. I.e. The ‘-‘ is
changed to underscore.

[NO] VARCHAR ALL
use varchar instead of char to define the
columns

BAD-DATA IS "xxxx" To compile in the bad data status code.

BINARY TO DISPLAY
Treat all COMP4 & BINARY fields as USAGE
DISPLAY.

CACHE SELECT n
‘n’ is the most number of parsed SQL
statements which TIP/dbi run-time should
cache in memory. Default is 48

CHECK CHAR FOR NUMERIC

This tells 'dbischema' to check for any field
declared as CHAR, if the the field and/or all
sub-fields are PIC 9 DISPLAY, then translate
any SPACEs in the data field to ZEROs.

TIP DataBase Interface Reference

14 TIP/dbi II IP-634

Clause Description

COBOL IS MICRO-FOCUS
Indicate that Micro Focus COBOL is being
used. This is the default.

CONCATENATE TRANSACTION
END

indicates that for programs using more than
one schema such as a DMS and an RDMS
schema, if one does Commit/Rollback then the
other is also automatically Commit/Rollback
processed.

DATABASE BLOCK nnnn
RECORDS

Where 'nnnn' is 4096, 2048 or 1024. The
smaller the number the larger the data file can
be. For 8K block size and 2048 the tablespace
file could grow to 16GB, For 8K block size and
1024 the file could grow to 32GB. For 8K block
size in the Oracle database and 4096 the
largest file is 8GB. The default value is now
2048. The old value used was 4096.

DATABASE-KEY CONTAINS
AREA

The bits required to hold the area number
occupy the top x bits of the DBKEY value. For
example if AREA CONTROL IS 127 then 7 bits
are required to hold the area#. The remaining
bits of the DBKEY hold the unique sequence
value assigned to the record.

 Schema compiler

 TIP/dbi II 15

Clause Description

DATABASE-KEY INCLUDES
AREA

This is to handle the case of applications which
FETCH via the DBKEY of a RECORD which is
in multiple areas and the application code does
not fill in the Area DBDN. On the 2200 this
would work, but on Unix, TIP/dbi needs to know
which table to read from. Without this option,
there are a possible 2**32 unique values that
could be used for a database-key. With this
option the number is reduced by a factor equal
to the most number of areas that a record is
defined in. For example, if a record could be in
12 different areas, then the largest unique
value gets reduced to 83 million.

DATABASE-KEY INCLUDES
RECORD

This is to handle the case of applications which
FETCH via the DBKEY of unknown RECORDs
and the application code does not fill in the
record name. On the 2200 this would work, but
on Unix, TIP/dbi needs to know which table to
read from. Without this option, there are a
possible 2**32 unique values that could be
used for a database-key. With this option the
number is reduced by a factor equal to the
most number of records defined in the
database. Eg. If there are 100 records in the
schema then the most records that could ever
have existed for any one record type is (2**32 /
100) or 32 million. Note that DBKEY values are
never reused.

DATABASE-KEY IS n

‘n’ declares the number of bytes that will be
used to store a DBKEY value. The default is 4
bytes (or 32 bits). The value may not be greater
than 8 bytes (or 64 bits).

DATABASE-KEY MULTIPLE
SEQUENCE

Declares that for each area that a record
belongs to a different SEQUENCE value should
be used to assign the next DBKEY value.

If USE AREA CODE was declared then all
areas of a record are stored in the same table
and by default a single SEQUENCE is used to
assign values for all area/record combinations.

This clause causes a different SEQUENCE to
be used for each area/record allowing for less
chance of running out of unique values.

TIP DataBase Interface Reference

16 TIP/dbi II IP-634

Clause Description

DATABASE-KEY WITH RECORD

This is another option to handle the case of
applications which FETCH via the DBKEY of
unknown RECORDs and the application code
does not fill in the record name.

For data fields defined as USAGE DATABASE-
KEY there will also be created a second field
called DBK-dbkname-R following dbkname.
The DBK-dbkname-R field will hold the
RECORD name associated with the DBKEY
value. A FETCH dbkname will then pick up the
record name to be fetched. This allows for any
one record type to have had created 2**31
records without the need to reload the
database. (Note that DBKEY values are unique
per table and never reused.) However this
option causes a PIC S9(9) COMP plus a PIC
X(30) field to be created each USAGE IS
DATABASE-KEY.

DATE IS “format”
Define the default date format. For example
“YYMMDD”. See page 26 for details.

DATE ZERO IS NULL

Indicates that a COBOL field defined as a date
with a value of ZERO will cause the SQL
column to be set to NULL. A NULL date column
will also return a value of ZERO to the COBOL
field.

Default: without this clause a NULL date
column would be returned to the COBOL field
as LOW-VALUES.

FIND IN VIA AREA
Optimize the table structures as the owner and
member of set are always in the same area.

FOLD INDEXES
Fold composite index fields into a single
column.

GUESS DATE “format”

Define the default date format. For example
“YYMMDD”. This also tells the schema
compiler to scan the record structure looking for
fields that may be date fields. It looks for the
word DATE in the name, etc.

GUESS DATE “format” patterns

Define the default data format and also give
more hints about which fields may contain
dates. For example:

GUESS DATE "YYYYMMDD" "-DT-", "-DATE-".

 Schema compiler

 TIP/dbi II 17

Clause Description

INDEXSPACE “name”
the default table space of the relational
database for storing indexes is “name”

KEEP DEFAULT
Compile schema to be compatible with the
older version of TIP/dbi

MAXIMUM CHAR LENGTH n

The default maximum length of a single CHAR
field for Oracle is 2000 and TIP/dbi does not
exceed that. However, Oracle 10 & 11 can
handle up to 8000. If you want to have TIP/dbi
use a larger maximum then define it with this
clause.

MAXIMUM DELAY n
n is maximum number of seconds which the
thread manager will wait for an idle server
process before starting a new process

MAXIMUM IDLE n
n is the maximum number of seconds a server
process is allowed to be idle. After this the
process is shut down.

MAXIMUM TABLE LENGTH n

Define the maximum amount of data that
TIP/dbi should assume Oracle can handle in a
single row of a table.

The default value is 32000.

MAXIMUM THREADS n
n is the maximum number of database server
threads to be executing under TIP

MINIMUM THREADS n
n is the minimum number of database server
threads to be executing under TIP

MAXIMUM SEQUENCE n

N is the maximum value that any DBKEY
Sequence may be assigned. When the value is
reached the Sequence is reset back to 1 and
for additional STOREs of new records if the
DBKEY is found to be a duplicate then the
sequence is incremented and the STORE is
attempted again.

NOT DATE patterns

Define a set of partial field names which are not
to be used as dates. For example:

NOT DATE "-DT-DE-FACT",

 "-DT-PRELEV-INV", "-DT-LANCE".

TIP DataBase Interface Reference

18 TIP/dbi II IP-634

Clause Description

OWNER IS “user”

Declare the database owner user-id. This is
user-id is used for security reasons when
accessing the database on behalf of the end-
user running the transaction program or batch
program. The name given will prefix all table
names.

PASSWORD “name”
the password for the user id to connect to the
database

PIC 1 TO BINARY
Treat all PIC 1 fields as BINARY or appropriate
size. This is the default.

PIC 1 TO DISPLAY Treat all PIC 1 fields as usage DISPLAY.

REMOVE RECORDS (name,
name2, …)

declares the named records to be 'obsolete'.
They are left in the schema but any reference
to them results in a warning message at
compile time and an error status at run-time.
The $TIPROOT/log/HISTORY will also get the
offending program recorded.

REMOVE FILLER

If the last field of a record is FILLER then do
not process as part of SQL database definition.
This will allow for easy extension of the
database later. (This is the default action)

RETAIN FILLER

If the last field of a record is FILLER then
process it as a normal data field. Only do this if
this field contains valid data for some reason. A
better choice would be to use a field name
other than FILLER.

RETRY GETUP 0.25
Retry the record lock at 0.25 second intervals
(default 0.1)

SEPARATE RECORDS
For records with too many columns and/or too
much data, split the record into multiple SQL
tables.

TARGETDBMS IS name

Where name could be one of oracle9, oracle10,
oracle11, sql2005, mysql or odbc. Used to
define which is the target relational database.

MSSQL-DATA indicates database migration
only and TIP/dbi is not used for runtime.

TABLESPACE “name”
the default table space of the relational
database is “name”

TRANSACTION READ
Tells Oracle to establish transaction-level read
consistency. If the transaction requires row

 Schema compiler

 TIP/dbi II 19

Clause Description

COMMITTED locks held by another transaction, then it waits
until the row locks are released.

TRANSACTION SERIALIZABLE

Tells Oracle to establish transaction-level read
consistency. If a serializable transaction
attempts to update any resource that may have
been updated in a transaction uncommitted at
the start of the serializable transaction, then the
transaction fails.

TRANSACTION READ WRITE
Tells Oracle to establishes statement-level read
consistency.

If the TRANSACTION clause is defined then it
is used for both batch and online.

If the TRANSACTION clause is not defined the
default for online transaction programs is like
TRANSACTION READ WRITE. The default for
batch is like TRANSACTION READ
COMMITTED.

USER-ID “name”
the Database user id to connect to the
database with

WAIT GETUP 1.5
To wait a maximum of 1.5 seconds (default 1.5)
(A value of 0 indicates to wait forever using
Oracle SELECT FOR UPDATE.)

In each area definition the following clauses may be optionally specified:

Clause Description

INDEXSPACE “name”
the table space of the relational database
for storing indexes of all records in this
area is “name”

TABLESPACE “name”
the table space of the relational database
for all records in this area is “name”

In each record definition the following clauses may be optionally specified:

Clause Description

DATE (names...)
The fields are to be defined as date instead
of char. The field must then be in the
default date format. See page 26 for

TIP DataBase Interface Reference

20 TIP/dbi II IP-634

Clause Description

details.

DATE “format’ (names...)

The fields are to be defined as date instead
of char. The field must then be in the
defined date format. See page 26 for
details.

DATABASE-KEY (names…)
Each of the field names listed is actually
used to hold a DATABASE-KEY of some
other record in the database.

ENCRYPT (names…)
The field names listed are encrypted in the
database.

FOR UPDATE

Indicates that this record is very often
updated when read. If the area is opened
for UPDATE then the record is read from
the SQL database FOR UPDATE. The
default behaviour is that the record is only
read for update from the database when
some DMS modification verb is used.

FOLD

Compact many COBOL data items into
SQL CHAR columns. This may improve
performance, but the resulting SQL
database is not very usable outside of
TIP/dbi.

NO FOLD (xxxx, …)

Normally TIP/dbi II will fold an array with
PIC X members where the total length is
less thatn 20 bytes into just one SQL
column. This is being done to improve
performance by reducing the number of
columns. 'dbischema' will emit a message
the following to indicate it is doing the fold:

Note: Treating xxxx size nn as one column

If you do not want this to happen add this
clause to the record definition.

INDEXSPACE “name”
the table space of the relational database
for storing indexes of all records in this
area is “name”

NUMERIC IS CHAR

Normally PIC 9 fields are stored in a
manner that easily allows numeric
manipulation form SQL. If this option is
specified then all PIC 9 DISPLAY fields in
this record are treated just like PIC X fields.
This would reduce the storage

 Schema compiler

 TIP/dbi II 21

Clause Description

requirements within SQL by 1 or 2 bytes
per field.

RAW name

RAW (name1,name2,…)

“name” is the name of a data field which
does not always hold the same type of
data. (For example, it may sometimes be
characters and sometime binary data).
RAW causes the data to be always
converted to hexadecimal and stored in the
database. This should only be used when
absolutely necessary. May not to be
supported.

REDEFINES name1

IF condition USE name2

[HIDDEN]

“name1” is the name of a data field which
is redefined and each of the redefines is to
be stored in separate columns in the same
table.

For each REDEFINES, there should be an
IF/USE definition. IF the condition is true,
then the name2 is the one that is valid. If all
IF cases are false, then the base field
definition is used.

HIDDEN indicates that the fields
REDEFINEing are not to be inserted by the
DML pre-processor.

STORAGE “storage”
string holds target database STORAGE
directives.

TABLESPACE “name”
the table space of the relational database
for all records in this area is “name”

VARCHAR name

VARCHAR (name1,name2,...)

The fields are to be defined as varchar2
instead of char

WITH DATABASE-KEY

For MIRAM/Indexed style records that you
want to also have a unique database key
column. This would be used for TIPFCS
function FCS-GETRN.

TIP DataBase Interface Reference

22 TIP/dbi II IP-634

Database key

Every record must have a database key. In DMS the database key is sufficient
to uniquely identify every record in the database. In the TIP/dbi DMS interface
the database key is unique only for a given record type and the same value
may be used for different record types. This means the application must know
which record type is wanted. This is may not be a very important restriction as
the applications generally always know which record type is wanted when
FETCHing by database key.

The next available unique number may be generated in one of a few ways
depending on the target database. It is generated using a built-in function of
Oracle called a SEQUENCE.

For LOCATION MODE DIRECT records a new database key is returned for
each STORE of a new record. The DMS application must not rely on specific
database key values being returned exactly as DMS/2200 does. The DIRECT-
DBK field is not used to assign new database keys. As long as the application
picks up the database key returned in the DMCA after a STORE it should
work correctly.

If the DMS application programs use FETCH dbkname with no record name
this will not work as coded. One option is to change the application code so
that it supplies the record name (eg. FETCH myrec RECORD dbkname).
Other options would be to use the schema clause DATABASE-KEY
INCLUDES RECORD which will work if the tables do not contain a lot of
records But if you have record types (i.e. Tables that hold 10s of millions of
record you could quickly run out of unique database-key values.)

Another option is to use the schema clause DATABASE-KEY WITH RECORD
which will create and extra field for each USAGE IS DATABASE-KEY to hold
the record name. Then on each MOVE dbkfld1 TO dbkfld1 the database key
as well as the associated record name will be copied. This requires the all
FETCH dbkname statements MUST have the dbkname field defined as
USAGE IS DATABASE-KEY. If dbkname is PIC S9(9) COMP you will get a
pre-processing compile error.

Area definition

An AREA can be represented by a TABLESPACE of the relational database.
A TABLESPACE allows tables to be grouped together, plus a TABLESPACE
may be assigned to its own storage file. The dbischema program will
optionally emit the SQL schema with the TABLESPACE information. The
table-space information is defined by adding a TABLESPACE “tabname”
clause to an AREA definition. In addition the indexes within an AREA may be
declared to be in a separate table space with the INDEXSPACE “indname”
clause, where indname is the table-space to hold the indexes.

 Schema compiler

 TIP/dbi II 23

DMS applications will often do AREA scans. This will be implemented by
reading each record type defined in the area consecutively. All of record type
A would be returned and then record type B and so on.

Record definition

The translation of the records is fairly straightforward. Each record becomes a
table in the SQL database. All record and field names are translated to lower
case and dashes become underscores. If TRIM NAMES is set and 80% of the
field names have the same common prefix or suffix then it is removed. If the
name is longer than the maximum allowed, it will be truncated and a sequence
number is appended to make the name unique within the record.

Every record will have an extra field added which is called row_recordname
that is an INTEGER PRIMARY KEY. Each record will then be assigned a
unique number when it is added to the database. This number is then used to
locate the record when needed. This unique value is used as the database
key.

The 2200 special data types of PIC 1 and Field-data are translated as follows:

All Field data (DISPLAY-1) gets translated into just PIC X and ASCII. When
unloading the database, then COBOL/DMS programs generated by dbiunload
will convert Field-Data into ASCII during the unload operation.

PIC 1 fields can vary from 1 bit to 36 bits long on the 2200. PIC 1(36) takes up
the a word, as does PIC X(4). The following table shows how many PIC 1 bits
get mapped to how many PIC 9

From Up to # of 9s

1 3 PIC 9

4 6 PIC 9(2)

7 9 PIC 9(3)

10 12 PIC 9(4)

13 16 PIC 9(5)

17 19 PIC 9(6)

20 23 PIC 9(7)

24 26 PIC 9(8)

27 29 PIC 9(9)

TIP DataBase Interface Reference

24 TIP/dbi II IP-634

From Up to # of 9s

30 33 PIC 9(10)

34 36 PIC 9(11)

The COBOL data types are mapped to SQL data types as follows:

COBOL Data
Type

SQL Data Type

PIC X(n) CHAR (n) or VARCHAR(n)

PIC 9(n)

1<= n < 5 then SHORTINT

5 <= n < 10 then INTEGER

10 <= n <= 18 then DECIMAL (n)

PIC 9(n)V9(m) DECIMAL (n+m,m)

COMP-1 FLOAT

COMP-2 FLOAT (double)

Since SQL does not support REDEFINES, these fields are skipped over. Only
first definition of a field in the record is emitted as an SQL column unless
otherwise directed by the ‘REDEFINES name IF condition USE name’ clause.
All of the record definition including REDEFINES is retained for subschema
processing and DML pre-processing. If a field does OCCUR, then it is emitted
as field01, field02, field03, etc.

If REDEFINES is only be used for convenience, like splitting a PIC X(n) field
into two pieces and the redefined data is completely compatible, then the
schema compiler just ignores the REDEFINES.

Use of RAW

If REDEFINES is used to redefine different types of data such as COMP-3
redefining PIC X there may be a problem. The SQL database must have only
one data type for a given position (column) within the record (row). Even PIC 9
or PIC S9 DISPLAY should not REDEFINE PIC X or any COMP type of fields.
If this situation is not avoidable then you should declare a PIC X for the region
of the record that is redefined several ways and then declare this field as
RAW. (For SQL Server and MySQL that field would be defined as type
BINARY.)

RECORD MYREC

LOCATION MODE xxxxxx

 Schema compiler

 TIP/dbi II 25

RAW PART1

WITHIN MYAREA.

05 THE-RECORD.

 10 FIELD1 PIC X(5).

 10 PART1 PIC X(10).

 10 FILLER REDEFINES PART1.

 15 FIELD2 PIC S9(7)V99 COMP-3.

 15 FIELD3 PIC S9(7)V99 COMP-3.

The above record would result in the follow SQL structure.

CREATE TABLE myrec (

 Field1 CHAR(5),

 Part1 RAW(10),

 Row_myrec INTEGER PRIMARY KEY);

REDEFINES Clause

An alternative to declaring a field as RAW is to define how it is used and split it
out as separate columns. For example:

RECORD MYREC

LOCATION MODE xxxxxx

REDEFINES PART1

IF FIELD1 = “NUM” USE FILLER-1

WITHIN MYAREA.

05 THE-RECORD.

 10 FIELD1 PIC X(5).

 10 PART1 PIC X(10).

 10 FILLER-1 REDEFINES PART1.

 15 FIELD2 PIC S9(7)V99 COMP-3.

 15 FIELD3 PIC S9(7)V99 COMP-3.

The above record would result in the follow SQL structure.

CREATE TABLE myrec (

 Field1 CHAR(5),

 Part1 CHAR(10),

 Field2 DECIMAL (9,2),

 Field3 DECIMAL (9,2),

 Row_myrec INTEGER PRIMARY KEY);

For a given row, the columns that are valid would be set to hold the data and
the columns that are not valid would be set NULL.

If a field is declared as the CALC key or INDEX field (DUPLICATES NOT
ALLOWED), then it is emitted as a UNIQUE. Secondary INDEX fields are
emitted as UNIQUE if DUPLICATES ARE NOT ALLOWED or as a CREATE
INDEX when DUPLICATES ARE ALLOWED (FIRST or LAST) or the order is
DESCENDING.

TIP DataBase Interface Reference

26 TIP/dbi II IP-634

When DUPLICATES ARE FIRST or LAST then a column called
pos_recordname becomes part of the index to sequence the duplicates. This
column (pos_recordname) holds the same value as row_recordname when
DUPLICATES LAST and it holds negative row_recordname when
DUPLICATES FIRST.

For every set, which a record is a member of, it will have an extra field added
which is called own_setname. This own_setname will hold the same value
as row_recordname of the owner record of that set and is also the first part of
the index created to implement the set. If the set is not SORTED then there
will also be a pos_setname added to the record, which will represent the
position of the record within that set.

Naming indexes for a Record

TIP/dbi schema accepts a specific index name to be used for the Oracle
index. This is defined as a string enclosed in quotes as part of the INDEX
definition. For example:

 LOCATION MODE INDEX SEQUENTIAL

 USING CM-NUMBER

 AS KEY 1 "K1_TXPFILE"

 DUPLICATES NOT ALLOWED

 USING CM-TELEPHONE

 CM-COMPANY

 AS KEY 2 "TXPFILEIDX3"

 DUPLICATES ALLOWED

Date format

You may define how your application stores DATE information. Inside the
database, TIP/dbi will always expect dates to be in a full YYYYMMDD format
and date/time to be in YYYYMMDDHHMISS format. Date fields could be
defined like the following:

 DATE (CM-DATE, CM-PK-DATE)

 DATE "MMDDYYYY" (CM-DATE, CM-PK-DATE)

 DATE "YYYYMMDD" CM-SHORT-DATE

 DATE "YY%60MMDD" CM-PIVOT-DATE

 DATE "YYY+1800MMDD" CM-BASE-DATE

The Y is a place holder for a YEAR, MM for month, DD for day, HH hour, MI
minutes, SS seconds.

If the Ys are followed by ‘%’ then the digits after the ‘%’ defines a pivot year
used to map the YY value into a 4 digit year. In the above example if the YY
value is below 60 then it is 19YY else 20YY

If the Ys are followed by ‘+’ then the digits after the ‘+’ are added to the Y
value. In above example, the year is 1800 + YYY value.

 Schema compiler

 TIP/dbi II 27

There is a limit of 30 different DATE formats per schema.

If the day is defined like DDD (3 Ds) then it is taken to be the day of the year.
For example:

DATE "YYYYDDD" CM-DAY-OF-YEAR

If you define data fields and omit the date format then the fields default to the
date format defined in the schema header section. If there is no default date
format defined then it defaults to YYYYMMDDHHMISS.

If the COBOL date field is all ZERO then the SQL date column will be set to
the minimum allowable date and if the date column has the minimum
allowable date the COBOL field will be given back a value of ZERO. However,
if DATE ZERO IS NULL was defined, then a ZERO date field causes the
column to be set to NULL.

For MicroSoft SQL Server the minimum date is 1753-01-01.

For MySQL the minimum date is 1000-01-01.

For Oracle the minimum date used is 0001-01-01.

If the COBOL date field is all 9s then the SQL date column will be set to the
maximum allowable date value which is normally 9999-12-31.

UCSTDATE format

The OS2200 system has a function UCSTDATE$ which returns the date/time
as a 36 bit value as follows:

 05 TD.

 10 MM PIC 1(6).

 10 DD PIC 1(6).

 10 YY PIC 1(6).

 10 SEC PIC 1(18).

 DATE "UCSTDATE" (CM-DATE, CM-PK-DATE)

MM is month, DD is day of month, YY is years since 1964 and SEC is
seconds past midnight.

With TIP/ix and TIP/dbi the time will be returned as 6 bytes in the following
format:

 05 TD.

 10 MM PIC 99 COMP.

 10 DD PIC 99 COMP.

 10 YY PIC 99 COMP.

 10 SEC PIC 9(5) COMP.

Defining DATE “ERTDATE” tells TIP/dbi that the field(s) are a date/time in this
format.

TIP DataBase Interface Reference

28 TIP/dbi II IP-634

Clustering records

TIP/dbi schema compiler accepts the directive CLUSTER in a record definition
that owns a SET. When declared, the set owner and member(s) that are
LOCATION MODE VIA SET and are in the same area will be defined to be
stored in an SQL CLUSTER.

Oracle has a CLUSTER concept, which can be used to group related
information together.

Clusters may be used to group tables together on the same database pages
much like LOCATION MODE VIA.

Clusters may also be used to store rows into pages based on hashing of
selected columns. This is much like LOCATION MODE CALC.

Multiple Area records

DMS/2200 allows records to be located in more than one AREA of the
database. The AREA to be used is controlled when the application program
places the correct area name into a ‘database data name’ as declared in the
schema definition. These database data names are copied into the program
during the pre-processing procedure.

The schema program will generate a target schema such that new tables are
created for each area that the original multi-area record was declared to exist
in. The table name becomes recordname$nnn where nnn is the AREA ID.

 Schema compiler

 TIP/dbi II 29

Set definition

DMS sets that only have a single member record are implemented by adding
an INDEX to the member record table.

 For SORTED sets the index consists of own_setname and the
field(s) on which the set is sorted.

 For non-sorted sets the index consists of own_setname and
pos_setname.

The pos_setname field is a number, which is manipulated to maintain the
member record sequence within the set. This is a double floating point
number.

ORDER FIRST Pos_setname decreases for each new member

ORDER LAST Pos_setname increases for each new member

ORDER NEXT
Pos_setname is a computed value between adjacent
members

ORDER PRIOR
Pos_setname is a computed value between adjacent
members

ORDER SORTED The sort field is used as part of the index

The owner record of a set can be located by taking the own_setname value
to locate the owner record in its table. This own_setname can also be used to
locate entries in the set index of the member table. The list if all members of a
set can then be scanned by reading through those entries in the table that
match own_setname ordered by pos_setname (or sort field for sorted sets).

If the DMS set has multiple types of member records then a table is created in
the SQL database to implement this type of set. The table will look like the
following:

 CREATE TABLE setname (

 own_setname INTEGER,

 pos_setname FLOAT,

 member_id INTEGER,

 member_row INTEGER,

 PRIMARY KEY (own_setname, pos_setname))

 ALTER TABLE setname ADD (

 CONSTRAINT

 FOREIGN KEY (own_setname)

 REFERENCES ownerrec (row_ownerrec));

After the key portion of the set record will follow member_id that is a number
indicating which record type is the member and member_row corresponds to
the row_recordname of the member record. If it were a sorted set then the
sort field would be used in the table in place of pos_setname.

TIP DataBase Interface Reference

30 TIP/dbi II IP-634

Subschema compiler

A separate utility called dbisubschema is used to process DMS subschema

definitions. The sub-schema is primarily used by the DMS pre-processor to
limit the view of the database. In the case of DMS/2200 all field renames and
redefinitions are done in the subschema.

The usage of this utility is as follows:

TIP/ix ver 2007/12/21 2.5 R0 - 0124 © 1991-2007 Inglenet Business

Solutions

TIP/dbi Sub-Schema compiler; Version 1.43 2007/10/15

 © 1991-2007 Inglenet Business Solutions

 dbisubschema [-wOR] subschemafile

Where the options are:

 -w Report more warnings

 -O Check for DMS/1100 specifics

 -R Skip exhaustive check for mixed data types

 DML pre-processor

 TIP/dbi II 31

DML pre-processor

The program dbipre has been developed to provide many COBOL pre-
processing functions. dbipre recognizes and processes the DMS Data
Manipulation Language statements. You should not retain the intermediate
output file created by dbipre after the COBOL compiler use, since it is created
based on the current contents of the matching dictionary files for the DMS
database produced by schema.

The base dictionary directory is $TIPROOT/DMS/ or the value of the
environment variable TIPDMS. The base dictionary directory then becomes
$TIPDMS/schemaname.dd3/.

The command line for dbipre may have some options specified and the file
name to be processed. The other possible command line options follow.

Option Description Default

-d do create an output file not created

-v print more warning messages No

-fSQL
Pre-process all EXEC SQL for use with
TIP/dbi

No

TIP/dbi Cobol/DML pre-processor; Version 1.305 2014/08/17

 © 1991-2014 Inglenet Business Solutions

 dbipre [-options] -i filename

 Where the options are:

 -v Verbose mode

 -i Name the input file name

 -o Name the output file name

 -D Pre-process as a DPS/2200 transaction program

 -O Pre-process as a DMS/2200 batch program

 -T Pre-process as a TIP/ix transaction program

 -I Pre-process as an IMS transaction program

 -d Do DMS pre-processing

 -P lvl Parse 'program' & display SCRATCH area to level 'lvl'

 -B lvl Parse 'filename' as COPY Book & print symbols to level 'lvl'

 -Q lvl Parse 'filename' as COPY Book & print symbols to level 'lvl'

 Assume NO IBM COMP format data with -Q

 -s Module is a subroutine; Default is mainline program

 -e Process DMS OPEN ALL USAGE verbs for each area in schema

 -E book Copy 'book' for DMS-STATUS SECTION. (default: TC-DMSST)

 -p Force preprocessing to complete; Used for COPY book processing

 -fSQL Process EXEC SQL statements for execution with TIP/dbi II

 -fos2200 Parse Data Division assuming OS/2200 COMP format

 -fibmcomp Parse Data Division assuming IBM COMP format

 -fnoibmcomp Parse Data Division assuming NO IBM COMP format

The dbipre program may read a module called myprog.dml and create a
module called myprog.bat (for batch programs) or myprog.cbl (for
transaction programs). A makefile can be used to look for the .dml extension
and then pre-process the code, compile the resulting COBOL code and then
remove the COBOL source.

TIP DataBase Interface Reference

32 TIP/dbi II IP-634

The DML statements are translated into CALL statements using parameters
very similar to those used by DMS/2200. Refer to the appendices of the
DMS/2200 programmer’s reference manual for details. The parameter list is
always ended with a parameter, which points to a word of all HIGH-VALUES.

The Data Management Control Area (DMCA) is intended to be the union of
fields used in the DMS/80 DMCA and the DMS/2200 DMCA. Some of the
fields are larger (Area PIC X(18), Record PIC X(30), Set PIC X(30)). The
DMCA used by the TIP/dbi DMS emulation interface is similar but not identical
and application code should not rely on it being identical. In most cases this
will be no problem.

The DMCA has a new field (DML-SEQUENCE) that holds the source line
number of most recent DML statement executed. This is very helpful in
debugging applications.

The DMCA has a extra field (DBI-SQL-STATUS PIC S9(8)) which holds the
exact Oracle status value after any Oracle error has occurred. This is very
helpful in debugging applications.

Table of DMS Verbs and matching numeric value

Verb Description Verb Description

2 CLOSE ALL AREAS 3 DELETE record ONLY

4 DELETE record ALL 6 FIND record USING dbkey

7 FIND CURRENT record 8
FIND CURRENT OF name
SET

9
FIND CURRENT OF name
AREA

10
FIND NEXT record OF name
SET

11
FIND NEXT record OF name
AREA

12
FIND PRIOR record OF name
SET

13
FIND PRIOR record OF
name AREA

14
FIND NEXT RECORD OF
name SET

15
FIND NEXT RECORD OF
name AREA

16
FIND PRIOR RECORD OF
name SET

17
FIND PRIOR RECORD OF
name AREA

18
FIND FIRST record OF name
SET

19
FIND FIRST record OF name
AREA

20
FIND FIRST RECORD OF
name SET

21
FIND FIRST RECORD OF
name AREA

22
FIND LAST record OF name
SET

 DML pre-processor

 TIP/dbi II 33

Verb Description Verb Description

23
FIND LAST record OF name
AREA

24
FIND LAST RECORD OF
name SET

25
FIND LAST RECORD OF
name AREA

26
FIND record BOOLEAN VIA
INDEX

27
FIND position record VIA
INDEX

28
FIND record VIA set USING
field(s)

29
Pass data field for FIND-28
search

30
FIND CURRENT OF RUN-
UNIT

31 FIND OWNER OF SET 32 FIND record

34 GET record 35 MODIFY record

36 OPEN UPDATE 37 OPEN RETRIEVAL

38
OPEN ALL PROTECTED
UPDATE

39
OPEN ALL PROTECTED
RETRIEVAL

40
OPEN ALL EXCLUSIVE
RETRIEVAL

41
OPEN ALL EXCLUSIVE
UPDATE

42 STORE record 44 INSERT record INTO set

46 REMOVE record FROM set 48 BIND record

50
FIND NEXT DUPLICATE
record

51
FIND record VIA CURRENT
set USING ident

52 DELETE record 53 DELETE record SELECTIVE

54
MOVE CURRENCY STATUS
OF RUN-UNIT

55
MOVE CURRENCY STATUS
OF name RECORD

56
MOVE CURRENCY STATUS
OF name AREA

57
MOVE type CURRENCY
STATUS OF name SET

60 IF MEMBER 61 IF OWNER

62 IF NOT MEMBER 63 IF NOT OWNER

64 IF SET EMPTY 65 IF SET NOT EMPTY

70 71 OPEN area RETRIEVAL

72 OPEN area UPDATE 73
OPEN area EXCLUSIVE
RETRIEVAL

74
OPEN area EXCLUSIVE
UPDATE

75
OPEN area PROTECTED
RETRIEVAL

TIP DataBase Interface Reference

34 TIP/dbi II IP-634

Verb Description Verb Description

76
OPEN area PROTECTED
UPDATE

78 OPEN area INITIAL LOAD

81 BIND SubSchema 82 UNBIND SubSchema

90 DEPART 91 KEEP [EXCLUSIVE]

92 FREE WITH CHECKPOINT 93 DEPART WITH ROLLBACK

95
FREE CURRENT OF RUN-
UNIT

96 FREE ALL

97 ROLLBACK 86 FIND dbk

99 End of OPEN AREAS

 Application interface modules

 TIP/dbi II 35

Application interface modules

The dbipre program will process the DML statements creating CALLs to an
interface module. Various interface modules may be used depending on the
type of program and the type of the target database.

Batch interface for DMS

Batch programs which use DMS/80 or DMS/2200 must also be able to use
this software. Batch programs must be linked with the database emulation
code and database I/O modules.

The link edit directives which can be used are

-L$TIPROOT/lib -ldbixio -ldbirun -ldbi2

Batch interface for Indexed Files

Batch programs which use indexed files must also be able to use this
software. Batch programs must be linked with the database emulation code
and database I/O modules.

When ‘make’ is used from within the schemaname.dd directory, an archive
called libschemaname.a is created. This archive must be included as well as
$TIPROOT/lib/libbat.a and $TIPROOT/lib/libdbi.a during the compilation of the
batch COBOL program.

The link edit directives which can be used are

-L$TIPROOT/lib ldbixio -ldbirun -ldbi2

TIP DataBase Interface Reference

36 TIP/dbi II IP-634

TIPIXDMS - transaction program interface

The module tipixdms would be called by transaction programs. The same
module can be used for all target databases since the TIP database interface
process should always provide the same interface and communication method
and it must take care of the differences between the target databases.

On IMPART, a request for the specific schema I/O module is sent to the TIP
thread manager. Record BIND requests are tabled up for the application
process. The I/O module will BIND all of its own record work areas.

Binding establishes the communication needed between the run unit and the
RDBMS. For example, it provides the linkage between the RDBMS and the
subschema record descriptions in your program.

All other DML verbs are sent as messages to the selected server module. The
status X command can be used to display active database interface server
processes.

On DEPART, the request would be sent to the I/O server. The server would
defer doing an actual DEPART until it received a commit/rollback indication
from the TIP Commit Manager.

Converted TIP/1100 programs need to be linked with the archive for 2200
programs, $TIPROOT/lib/lib2200.a

The link edit directives which can be used are

-L$TIPROOT/lib -l2200

 Application interface modules

 TIP/dbi II 37

TIPFCS interface

The database I/O module must also be able to process TIPFCS style of
requests. Each record in the database may be accessible as a simulated
indexed data file (ISAM) through the normal TIP CALL TIPFCS and IMS CALL
GET interfaces.

When multiple pseudo files (database tables) are being accessed by the same
transaction and they are also in the same database, then care is taken to use
the same server database process.

Defining a MIRAM Schema

To define a database of relational tables which are to be processed like
MIRAM (or ISAM) files through the TIPFCS interface you must create a DMS
Schema definition (the pseudo-schema).

In the pseudo-schema, define the record as LOCATION MODE INDEX
SEQUENTIAL and define all of the indexes. You must also define an AREA
NAME MIRAM and declare all records as WITHIN MIRAM. The area name
MIRAM is treated as a special area.

For a sample schema, see Migrating an INDEXED File Application later in this
book.

Defining a Table to TIPFCS

To define a file which is really a table of a relational database, you must first
construct the MIRAM Schema and build it. Then, using SMFILE:

 define File type as RDBMS

 define Label/Path with the record name defined in the MIRAM
Schema

define FCS Server with the name of the database I/O module ({MIRAM
Schema Name}io)

Generate a MIRAM Schema from Oracle

The dbitosch.pc utility is supplied in source code format. You must pre-
process it with Oracle proc and compile it. A makefile called Make.pc is
provided for this purpose.

make -f Make.pc dbitosch

TIP DataBase Interface Reference

38 TIP/dbi II IP-634

Once compiled, dbitosch can be used to extract relational table structures
from the Oracle data dictionary to create a MIRAM Schema. You may have to
edit the result to add information about TABLE SPACE, user id, passwords
etc. You would then process the MIRAM Schema with the TIP schema
program and build the I/O module. (Do not use the schema.ddl module since
Oracle already has the tables defined.

Syntax:

dbitosch options table1 [.. tablen]

Where:

-c Generate COBOL copybooks for each table

-C directory
Generate the COBOL copybooks into this directory

-d Use the date format defined by Oracle's
NLS_DATE_FORMAT parameter (instead of the default
value of "YYYYMMDDHH24MISS") when generating the
DATE IS format directive.

-S name
Specify the Schema name

-U user id
Oracle User Id to connect to Oracle with

-P pass
Oracle password to connect to Oracle with

Following the options is a list of table names to be built into the MIRAM
Schema definition. The following example constructs a schema named
FCSRDMS and generates COBOL copybooks for the Oracle tables ‘tspfile
inven orders parts’:

dbitosch -S FCSRDMS -U system -P manager\

-C /source/books tspfile inven orders parts

 Note: The slash at the end of line one is the UNIX line continuation
character.

TIPFCS Relative Record Number and Oracle

The TIPFCS interface to relational database will return a relative record
number for all I/O requests. This relative record number is computed from the
ROWID. With Oracle the ROWID is an 8 byte field while the TIPFCS relative
record number is only 4 bytes. This leads to some compromises and
restrictions.

 Application interface modules

 TIP/dbi II 39

An entire Oracle table must be stored in a single UNIX/Window file. Each
block of the oracle database must not hold more than 4095 rows (or records)
in a single block and there can be no more than 1,048,575 blocks in the file.
With an Oracle block size of 4096 the maximum amount of data in a table
would be 4 gigabytes, block size of 8192 yields a maximum of 8 gigabytes and
2048 yields 2 gigabytes of data.

If the above limits are exceeded then you cannot use the TIPFCS relative
record number to access retrieved records. You can use all other TIPFCS
functions. Refer to more detailed discussion on this later in the section titled
TIPFCS relative record number & Oracle.

TIP DataBase Interface Reference

40 TIP/dbi II IP-634

Database Password Encryption – dbipwd

The utility dbipwd may be used to store the user/password information into a

small text file in an encrypted format. The data is only decidable by the TIP/dbi
runtime code. The command usage is:

TIP/dbi Password Encoder; Version 1.13 2010/04/27

 © 1991-2010 Inglenet Business Solutions

Utility for encoding Database password information for TIP/dbi

Usage: dbipwd -s schema -d dsn -u user -p password -c connect-string

Where:

 -s schema defines the TIP/dbi schema name

 -u user defines the Userid for connecting to the database

 -p password defines the password for connecting to the database

 -S sid defines the ORACLE_SID value to use

 (Optionally used for Oracle)

 -d dsn defines the ODBC DataSetName defined in /etc/odbc.ini

 (Used for MySQL, DB2 & MS SQL)

 -c string Could be used as an alternative to user/password to

 define a full connection string for the database

 -w writepwd Once defined this password must be for updates

 This is a 'write password' for the password file

 -g group The password file will have its Unix group set to that

 Given. This user running dbipwd must also be a member

 of this Unix group

A text file called schema.pwd is created in $TIPROOT/conf.

Former RDMS 2200 program may be converted to using procob and a CALL
‘ORARDMPWD’ will be inserted to look for the schema.pwd file of the DEFAULT
SCHEMA name and then set the user & password from the information in the password
file.

The most common example of use of this might be as follows:

dbipwd –s payschema –u payusr –p paypwd

 Using the Database Interface

 TIP/dbi II 41

Using the Database Interface

There are a number of steps to go through when using the database interface.
The steps vary slightly, depending on whether a true DMS schema is used, or
a pseudo-schema for C-ISAM type access.

In the following sample the steps described are for an Oracle database, and
the compiler is Micro Focus. (If you use a different RDBMS or compiler, a few
changes may be necessary.)

Description Syntax Example

Process schema and sub-schemas
dbischema -M myschema.sch
dbischema -M mysubschema.sch

Make sure your RDB is running
su - oracle
dbstart

Create the Oracle tables
cd $TIPDMS/myschema.dd
sqlplus system/manager <*.ddl

Pre-process and make your data loading
program

dbipre -d myload.dml
make myload

Load the data myload | tee myload.log

Pre-process and make your on-line and
batch programs

TIP DataBase Interface Reference

42 TIP/dbi II IP-634

Performance Considerations

This section only provides some general guidelines for performance based
upon some of our experiences. Proper configuration and maintenance of the
Relational Database Management System used is ultimately a customer
responsibility. For more information refer to your Oracle Server Administrator’s
Guide and the Oracle Server Tuning Guide for information on Oracle
configuration and tuning.

A number of parameters and data base configuration options can be used to
considerably improve performance when using TIP/dbi with a relational
database. These are discussed individually below.

It is assumed that sufficient processing power, ample system memory and
proper placement of database files across disks and controllers are already in
place.

Choosing the best type of disk configuration will play an important factor in
overall performance, and will be driven by the type of applications being run
(write versus read ratio, transaction sizes, record contention, etc.). Often self
managed, conventional disk configurations, provide better performance than
RAID 5. And mirrored disk configurations may be better in high query oriented
systems since the data requests can be serviced from two sources.

Database configuration

Block Size

It is recommended that the database be created with a larger block size than
the default of 2048. Considerable improvements can be achieved by using a
block size of 8192. The data base block size needs to be determined at
product installation time, and cannot be changed without recreation of the
system.

Please check the relevant documentation for your version of UNIX/LINUX to
determine what the maximum block size allowed is. On several versions 8192
is the UNIX/LINUX OS maximum, whereas the Oracle block size can be
larger.

There are also some drawbacks when using very large block sizes (larger
than 8192), mostly having to do with database segment concurrency. Please
check your Oracle documentation for more information.

The recommendation is to set db_block_size = 8192 in your initxxx.ora file.
This must be done before creating any Oracle database.

 Performance Considerations

 TIP/dbi II 43

DB_INIT Parameters

Default database installation parameters tend to provide a configuration for a
small system setup. The Oracle parameters (initsid.ora) can be modified to
increase parameters like DB_BLOCK_BUFFERS and SHARED_POOL_SIZE.
These parameters are read at database instance startup time. The size of
these parameters are dependent on available physical memory. Allocating
more than available physical memory would performance degradation.

Unless your system is quite small (less than 500 Mb of data, less than 20
concurrent users) rather than the default “small” the “medium” or “large”
options should be evaluated.

Default TIP/dbi user id/password

It is not recommended to use the DBA user id/password for TIP/dbi access to
Oracle. The TIP/dbi user id/password can be coded into the schema source,
or set as an environment variable. The environment variable will override what
is coded in the schema source.

As a rule application specific user id/passwords should be used. These should
not have access to the SYSTEM table space.

Folding Tables

Traditionally DMS and C-ISAM files tend to use many fields per record, which
translates into many columns per table in the RDBMS. This causes overhead
in a RDBMS, the more columns names there are, the more elements need to
be processed. For retrieval of single records, or small groups of records, as
happens in on-line programs, the impact is insignificant.

However, when complete files are read from top to bottom, as is often the
case with traditional mainframe batch programs, processing tends to be
significantly slower when comparing it to ISAM file access on a similar UNIX
platform. When migrating applications from older mainframe hardware
platforms, this effect is often negated by the increase in performance of the
new hardware.

The number of elements that need to be processed by the RDBMS can be
drastically reduced by folding the tables, which reduces the number of
columns used in the RDBMS. This is done by specifying "FOLD ALL" at the
schema level, or "FOLD RECORD" at the record level.

Individual column names can still be accessed with view tables, that are
generated by dbipre as part of the schema processing.

TIP DataBase Interface Reference

44 TIP/dbi II IP-634

DML_LOCKS

How they are handled:

DBI never substitutes FOR UPDATE on SELECTs with a WHERE clause as
this would effectively lock most of the records in the table. So DBI does a read
and then locks the record by re-reading it via its unique ROW_recordname
value with FOR UPDATE. This SELECT will never be logged due to its
unimportance.

What DBI does:

 If it was an OPEN PROTECTED UPDATE, then dbi issues a re-read
FOR UPDATE on every record read.

 If it was an OPEN EXCLUSIVE, then dbi issues a LOCK TABLE
EXCLUSIVE for each table in the area.

 If it was an OPEN FOR UPDATE, then dbi issues a LOCK TABLE
ROW SHARE for each table in the area.

 If the area was OPEN FOR UPDATE and the FETCH had KEEP or
EXCLUSIVE or you had FOR UPDATE in the schema then each
record read in that area would be locked as it is read.

 If the application is OPENing all areas in the schema then some sort
of table lock will get issued before anything is read.

What to do:

To elevate this problem you may be required to increase the size of the
dml_locks in the init.ora file. Oracle error –55 indicates the value for dml_locks
is too low. Add more DML_LOCKS until the problem goes away. Adding more
DML_LOCKS does not affect performance as long as you make appropriate
adjustment to your SHARED_POOL_SIZE parameter.

Minimum DML _LOCKS requirement for TIP/dbi is calculated as:

No. of tables * number of dbi threads.

TIP/dbi SCHEMA source parameters

Placement of Index and Data

TABLESPACE and INDEXSPACE can be placed in several places in the
schema source, for the whole database, the area level and the record level.

This allows for proper load balancing between various table spaces, and
ultimately disk drives and disk controllers.

Application data should not be placed in the SYSTEM table space.

 Performance Considerations

 TIP/dbi II 45

CLUSTER

Allows for the placement of SET OWNER record and SET MEMBER record
on the same database page in Oracle. This functionality is similar to DMS
behavior.

TIP/dbi Environment Variables

Use of TIPDMSCOMMIT

The TIPDMSCOMMIT environment variable specifies the number of calls to
TIP/dbi before an automatic commit will be issued. This is required for
programs that were not written based a transaction concept, typically batch
programs. This may create problems when reading large files from top to
bottom.

Performing frequent commits uses Oracle resources, but not performing
commits will use of Oracle work space (logs and temp). Running out of space
in the Oracle temporary tablespace

Through testing a trade-off point has to be found where this parameter is
significantly high enough, so not too many commits are performed, but is low
enough that no file system problems arise.

TIPDMSLOG

TIPDMSLOG is both a schema clause for on-line, and an environment
variable for batch programs. Turning on all logging options will significantly
slow down the application.

For all production environments logging should be turned off.

TIP DataBase Interface Reference

46 TIP/dbi II IP-634

TIPFCS Relational database access

Inglenet wants to provide access to relational databases through the TIP/ix
TIPFCS call interface and IMS/2200 CALL interface as well. In order to
accomplish this we require a database interface process similar to the current
TIPFCS. Relational 'tables' are part of some 'database'. So, both the table
name and database name must be defined for TIP to access the information.
It makes sense to group all tables of a given database into a configured
database interface process.

The approach taken here is to make up a DMS schema definition which
copies in all record structures and defines the key fields as if they were DMS
indexed records. This schema definition is then run through the schema
processor and creates the SQL database definition plus generates the correct
file definition records in TIP so that each record is defined as a logical file
inside TIP. Since there would be no sets defined the SQL schema would be
fairly straightforward.

As an option, in the case where the legacy view of the data and the relational
definition are identical, then we should only need to somehow associate the
table name with the TIPFCS or IMS/2200 file name. This should work for both
transaction programs as well as batch programs through the DBIXFH interface
to Micro Focus Cobol.

 Generating Database Interface

 TIP/dbi II 47

Generating Database Interface

Once the DMS schema and sub-schemas have been compiled, the SQL
database structure is known and the mapping rules defined, the next step is to
generate the TIP/dbi interface code to support the database. The utility for
doing this is called dbigen. (This utility is normally run automatically by
dbischema.) If it finds any inconsistencies the appropriate error messages will
be reported.

Syntax:

dbigen –d dms-schema –s sql-schema –m mapping-rules –t template-files

Where:

dms-schema
is the name of the DMS schema to be generated

dql-schema
is the name of the SQL schema definition. Default is the
one generated by schema.

mapping-rules
is the name of the data mapping rules files. Default is the
one generated by schema.

template-files
is the location to find the template files used for code
generation. Default is system.

TIP DataBase Interface Reference

48 TIP/dbi II IP-634

Database unload/reload

TIP/dbi is a sub-system of TIP used for the migration of mainframe DMS

applications to Oracle on Unix/Linux. The purpose of the dbiunload utility is

to generate the COBOL DML programs to unload the database from the

mainframe and then dbireload is used to reload the data into Oracle.

A utility program called dbiunload has been developed to help address the
problem of actually moving the data from mainframe to UNIX/LINUX. This
utility runs on UNIX/LINUX and is part of the TIP/dbi system. Once the TIP/dbi
schema compiler has compiled the DMS schema and sub-schema source,

then the dbiunload utility may be used.

The utility does an analysis of the database structure to determine the correct
order in which the records should be processed. For example, all records that
own a set must be loaded before any of the set members. When records are
members of several sets, then all owner records must be loaded before
loading the member records.

Disclaimer

You should always view the programs generated by dbiunload as good

working examples. A programmer, who is familiar with the database, should
review the generated programs and make any required changes to ensure
their correct operation.

This is an automated process and there could very well be some subtle issues
that are not handled correctly.

DBIBLDUL options

The command summary usage is as follows:

TIP/dbi Schema Unload program generator, Version 1.17 2015/06/30

Proper Command format follows

 dbibldul [options] -S schema -U subSchema -P prefix

Where:

 -S schema Name to be used

 -U subSchema Name to be used

Where [options] are:

 -P prefix of program names to generate

 -g Generate 'unloadplan.txt' in current directory

 -b n where n is maximum block size of files

 Default is 8192

 -c cmdfile read commands from named command file

 -i incfile read commands to include/exclude certain AREAs

 -d dispname is the environment name to DISPLAY UPON

 SPECIAL-NAMES. dispname IS DBILOG.

 -f n where n is maximum files per program; Default 29

 -k Unload via Index scan if possible

 -m if the Unload is to run on mainframe

 Database unload/reload

 TIP/dbi II 49

 (The default is to run on mainframe)

 -l if the Unload is to run on this system

 -O unload same record of different areas to one file

 -o unload each record to a different file

 -B if using MS SQL, generate 'bcp' format files

 The unload progams are generated in the current directory

If -g is not specified then 'unloadplan.txt' is read

 1st create unloadplan.txt, and verify it, then run dbibldul with no options

to do the actual generation of the COBOL unload programs

 The unload progams are compiled and run on the 2200 mainframe

and 'dbireload' is used to load that data into relational database

on Linux

Note: It's a good idea to double check what this utility produces.

The program takes the following command line options:

dbibldul -S schema -U subSchema -P progName

[-b n -f n -i n -m] areaNames

Where:

-S schema
Name to be used. Required parameter.

-U subschema
Name of the sub-schema to be used. Required parameter.

 Ideally this sub-schema only references the records which
are to be moved.

-P progName
Name of programs to generate. Required parameter.

-m If the Unload is to run on mainframe

-b n n is maximum block size of files. Default value is 8000.

-f n n is maximum files per program. Default value is 31.

-i n n is records added before a checkpoint. Default value is
500.

areas Names of the individual areas of the sub-schema to be
processed.

ALL Indicates that all areas of the sub-schema are to be
processed.

 This is the default choice if no area names are given.

The generated COBOL DML unload programs will be called
progNameul.dml.

TIP DataBase Interface Reference

50 TIP/dbi II IP-634

If more than one program is required then a sequence number will be
appended to ul as required. The number of programs generated is determined
by the number of records and areas divided by maximum number of files per
program. The host operating system will have some limit on how many files
can be defined in a single program.

DBIBLDUL operation

Each record type in the database is copied out to a single sequential file. The
records are stored in the sequential file in complete DISPLAY format. Using all
DISPLAY format data allows these intermediate files to be easily moved from
the mainframe. When coming from OS/2200, the sequential file can be
created in ASCII and copied over the network.

The database unload programs may be run in any order provided that the
source database is not changed until the entire unload sequence has been
completed.

Once all of the data is on the target platform, the dbireload utility is used for

additional processing and to invoke the Oracle sqlldr to bulk load the data.

If you know that some areas of the database do not have interdependent
records, it would be possible to generate a few sets of unload/reload
programs. Then you could run each set concurrently and therefore achieve
some overlap in the database re-construction process.

An example of the format of the sequential intermediate file is as follows:

01 RD0705.

 02 FILLER.

 10 RD0705-FUNC PIC X.

 10 RD0705-CODE PIC 9(4).

 10 RD0705-AREA PIC 9(4).

 10 RD0705-DBKEY PIC 9(9).

 02 FILLER.

* Owner of Set BATCH-DETAIL

 10 RD0705-OR0013 PIC 9(9).

 02 RD0705-DATA.

 05 PD-CUST-NO-705 PIC X(11).

 05 PD-CUST-PO-NO-705 PIC X(18).

 05 PD-PAYMENT-AMT-705 PIC S9(7)V99

 SIGN TRAILING

SEPARATE.

The record name is RD<code>, where <code> is the DMS record code.

The header portion consists of four fields.

Filed Description

FUNC Intermediate file function code.

 Database unload/reload

 TIP/dbi II 51

Filed Description

“A” means add this record

“U” means update this record

“D” means DELETE ONLY this record

“X” means DELETE ALL this record

CODE
DMS record-id code to identify the record type. (The
above example would hold “0705”.)

AREA

DMS area-id code to identify the area from which the
record came.

This is used for DMS/2200 when the record resides in
multiple areas of the database.

DBKEY DMS database key from the source database.

DATA
Group item for the record data. All fields are in complete
display format.

For each set that the record was a member of there will be a DBKEY (e.g.
RD0705-OR0013) which identifies the owner record of the set.

Multi-record sets

Sets that have multiple record types as members are copied out onto a single
intermediate file. In this case the intermediate file is using REDEFINES and
the RDxxx-CODE field is used to identify the specific record.

Sorted sets

Sorted sets are the easiest to reload, since the sort field is used to correctly
position the member record within the set. All that is required during the reload
is that the correct owner record be current of the set.

TIP DataBase Interface Reference

52 TIP/dbi II IP-634

Ordered sets

Ordered sets are more complicated. The issue is to ensure that the member
record is placed into the new database in the correct sequence.

Records that are members of a set are unloaded, in groups, based on the
owner of the set. The procedure is to scan the area and for each owner record
copy all member records out to the intermediate file.

When loading, the owner record is made current and the new member record
is then stored. This requires that the records be unloaded in the correct
sequence such that doing a STORE with the owner record current results in
the correct placement into the set.

ORDER
STORE with owner current

places new record
Unload member via

FETCH

FIRST FIRST PRIOR

LAST LAST NEXT

NEXT FIRST PRIOR

PRIOR LAST NEXT

This technique works when the record is only a member of one set, but if the
record is a member of several sets of different ordering methods, it is not
reasonable to only fetch the owner of the set. In this case an extra field is
created in the intermediate file which is the database key of the next or prior
member of the set such then if this member is made current and then the new
record is stored to the database, it will be correctly placed into the set
ordering.

 Database unload/reload

 TIP/dbi II 53

Data reformatting

Since the use of dbiunload, and the generated programs, results in a

database unload/reload, there is an opportunity to change the format of the
new database that is created.

This could be done by using the existing schema/sub-schema to generate the
database unload programs. But before actually compiling and running the load
programs, they could be manually altered to use a new schema/sub-schema.
As long as both sets of programs have the same view of the intermediate data
this procedure would work. This technique could be used to re-arrange the
placement of data fields, alter the size or format of data fields and to add new
data fields to a record.

As long as you view the programs generated by dbibldul as good working

examples, you could achieve many possible re-organization and/or
reformatting of the database by manually changing the programs generated

by dbibldul.

DBIRELOAD Utility

 The command summary usage is as follows:

TIP/dbi data loader (1.137 2015/07/11) - © 1991-2015 Inglenet Business Solutions

Usage is:

 dbireload [-opts] schemaname

Options:

 -i dir Input directory path

 Defaults to current directory

 -o dir Output directory path

 Defaults to current directory; Used as work area

 -s schema Schema name, already compiled by dbischema

 -c Invoke sqlplus to drop/create all tables

 -C Skip enable of CONSTRAINTS a end of load

 -k Do detailed checking of numeric fields

 -b In PIC 9 fields, if bad data set to ZERO

 -B In PIC 9 fields, if bad data do NOT set to ZERO

 -B is the default action

 -e In PIC 9(9) or 9(10) COMP fields, if all spaces set to ZERO

 -E In PIC 9(9) or 9(10) COMP fields, if spaces do NOT set to ZERO

 -e is the default action

 -z In PIC 9 fields, if all spaces set to ZERO

 -Z In PIC 9 fields, if spaces do NOT set to ZERO

 -z is the default action

 -A In PIC X fields, if bad data set to SPACE

 -t Translate character fields for Austria

 -F Force reload ignoring all errors (database may be suspect)

 -g connect Supply complete Oracle Connection string

 -l rec Just load/unload the one named record type

 -L file 'file' is in /etc/default/tipdbi.map format & indicates files to load

 -L is used with schemas which are ISAM emulation

 All files defined in this control file are loaded

 -U file 'file' is in /etc/default/tipdbi.map format & indicates files to unload

 -U is used with schemas which are ISAM emulation

 All files defined in this control file are unloaded

 LOCATION DIRECT records get unloaded as DAM files

TIP DataBase Interface Reference

54 TIP/dbi II IP-634

If all records in the schema are MIRAM/ISAM, then dbireload will read the file
defined with the –L option to get the location of the ISAM files and then the
data from the defined files are loaded into Oracle. The format of this file is the

same as that used for /etc/default/tipdbi.map. (See the section on

TIP/dbi batch interface to Micro Focus Cobol) This will result in any previous
data in the tables being lost.

DBKEY work file

An ISAM file is used to map the old database key to the new database key.
The intermediate sequential files all hold database keys from the old
database. Whenever new record is stored into the new database a record is
added to the work file holding the old and new database keys.

Since, UNIX/LINUX may have a limit of 2GB per file and each record in this
work file uses about 36 bytes, there may be a limit of 54 million records.

Unload/Reload Example

The following steps would be followed. Get the DMS schema properly defined
with all of the options required and field redefinitions, etc. And compile the
schema using dbischema and subschema using dbisubschema. For example:

dbischema dg-schema.sch

dbisubschema dg-ucs.sub

Then run dbiunload to generate the unloadplan.txt file. For example:

dbiunload -S dg-schema -U dg-ucs –g

This creates a file which is later used by dbiunload to generate the
COBOL/DMS unload programs. You have an opportunity to modify the unload
plan before code generation. A sample unload plan looks like the following:

Schema: dg-schema

Define order to process records for unload

Command line options follow

-S DG-SCHEMA

-U DG-UCS

-f 29

-b 8192

-p dg

-xi unix-ip-address

-xd /2200-sun/cnv

-xu user-id-goes-here

-xp password-goes-here

-m

Sequence of following determines order of unload/reload

 Database unload/reload

 TIP/dbi II 55

G marks start of group

A areaname indicates Area name in group

R unload record

T prodarea testarea (For Area name changes)

G 1 New unload program starts here C

A A-BEDATA

R BENUM

A A-DGVI

R DGVI

A A-BBDATA

R BB-STAMM

A A-BENAMDATA

R BENAM

A A-DGAKT

R DGAKTHD

A A-DGHI

R DGHI

A A-DGHV

R DGHVH1

A A-DGKTO

R DGUPHD

R DGKTO

A A-DGMVCD

R DGMVCD

A A-DGNI

R DGNI

Previous unload will use 28 files

G 2 New unload program starts here

A A-DGSALD

R DGSALDKB

R DGSALDHD

A A-DGST

R DGST

A A-DGSTOP

R DGSTOP

A A-DGVS

R DGVSKTO

A A-DGZG

R DGZGHD

A A-DIVDATA

R DGDIV

A CKPT-AREA

R CKPT-REC

Previous unload will use 22 files

Then run dbibldul to generate the COBOL/DMS unload programs

>dbibldul

Generate for unload running on 2200

Generating for SubSchema DG-UCS of Schema DG-SCHEMA

Loading /home/rjn/dms/dg-schema.dd3/dictionary.exp

Loaded /home/rjn/dms/dg-schema.dd3/dictionary.exp in 0 seconds

Unload programs generated for use on OS/2200 mainframe

Zip file created dgul.zip with unload programs

The programs along with some starter ECL is generated and placed into a ZIP
file for easy file transfer.

TIP DataBase Interface Reference

56 TIP/dbi II IP-634

Now transfer the unload programs to the mainframe, compile and execute to
create a collection of test files holding the data. Then transfer these text files

back to the UNIX/LINUX system to a unique directory and run dbireload

from inside that directory to load the data into Oracle.

 Indexed File interface

 TIP/dbi II 57

Indexed File interface

The database I/O module must also be able to process TIPFCS style of
requests. Each record in the database may be accessible as a simulated
MASM/ISAM file through the normal CALL TIPFCS and IMS CALL GET
interfaces. This will require changes to the TIP startup procedures to
recognize file defined as database tables.

Defining an MSAM/ISAM Schema

To define a database of relational tables which are to be processing like
MSAM or (MIRAM/ISAM) files through the TIPFCS interface you must create
a DMS Schema definition defining the record as LOCATION MODE INDEX
SEQUENTIAL and defining all of the indexes. You must also define an AREA
NAME MIRAM and declare all records as WITHIN MIRAM. The area name
MIRAM is treated as a special area. An example follows:

000001 IDENTIFICATION DIVISION.

000002 SCHEMA NAME IS FCSRDMS.

000003* Sample data base definition for use with TSTFCS, TSP

000004 DATA DIVISION.

000006 VARCHAR ALL

 WAIT GETUP 1.5 RETRY GETUP 0.05

 TRIM NAMES

000007 LOW-VALUES ARE NULL

000008 AREA SECTION.

000009

000010 AREA NAME MIRAM.

000011 AREA CODE IS 10.

000012

000013 RECORD SECTION.

000014

000015

000016 RECORD NAME INVEN.

000017 RECORD CODE 100.

000018 LOCATION MODE INDEX SEQUENTIAL

000019 USING IN-PART-NUM AS KEY 1

000020 DUPLICATES NOT ALLOWED

000021 WITHIN MIRAM AREA.

000022 COPY GC-INREC .

000023

 RECORD NAME DAMINV.

 RECORD CODE 200.

 LOCATION MODE DIRECT

 WITHIN MIRAM AREA.

 COPY GC-INREC .

000024 RECORD NAME TSPFILE.

000025 RECORD CODE 101.

000026 VARCHAR CM-COMPANY

000027 VARCHAR (CM-NUMBER CM-ADDRESS-1)

000031 LOCATION MODE INDEX SEQUENTIAL

000033 USING CM-NUMBER AS KEY 1

000034 DUPLICATES NOT ALLOWED

000035 USING CM-COMPANY AS KEY 2

000036 DUPLICATES ALLOWED

000037 USING CM-TELEPHONE AS KEY 3

000038 CHANGES NOT ALLOWED DUPLICATES ALLOWED

000032 USING CM-NUMBER, CM-TELEPHONE, CM-COMPANY CM-STATUS AS KEY 4

000034 DUPLICATES NOT ALLOWED

000039 WITHIN MIRAM AREA.

000040 COPY TC-TSP .

TIP DataBase Interface Reference

58 TIP/dbi II IP-634

000041

000052 RECORD NAME VBINVEN.

000053 RECORD CODE 104.

000054 LOCATION MODE INDEX SEQUENTIAL

000055 USING VB-PRID AS KEY 1

000056 DUPLICATES NOT ALLOWED

000057 WITHIN MIRAM AREA.

000058 COPY TC-INVEN .

000059

For INDEXED records only the data fields get mapped to columns in the
relational database. However, if you wanted to be able to use the TIPFCS
function FCS-GETRN (read by record number) then each row needs a unique
number to be assigned. TIP/dbi will do this if you add the clause WITH
DATABASE-KEY to the record definition. For example:

RECORD NAME TSPFILE.

 RECORD CODE 101.

 LOCATION MODE INDEX SEQUENTIAL

 USING CM-NUMBER AS KEY 1

 DUPLICATES NOT ALLOWED

 USING CM-COMPANY AS KEY 2

 DUPLICATES ALLOWED

 USING CM-TELEPHONE AS KEY 3

 CHANGES NOT ALLOWED DUPLICATES ALLOWED

 USING CM-NUMBER, CM-TELEPHONE, CM-COMPANY CM-STATUS AS KEY 4

 DUPLICATES NOT ALLOWED

 WITH DATABASE-KEY

 WITHIN MIRAM AREA.

 Indexed File interface

 TIP/dbi II 59

Loading ISAM/Sequential data file to database

A utility called dbiexpimp can be used to read the ISAM file and load the

data into the database table. The command usage is as follows:

TIP/dbi table load/unload, (c) Copyright 1994-2008 Inglenet Business Solutions

Usage:

 dbiexpimp -<options>

Where possible options are:

 -s schema name to be used for operation (Required)

 -a Flat file has <CR> as record separator

 -b n Bulk load 'n' records at a time (Max 50)

 -c Log load details to schema.log

 -C n COMMIT every 'n' records

 -i name input file name (Sequential)

 -o name output file name (Sequential)

 -I name input file name (ISAM)

 -O name output file name (ISAM)

 -r name record name

 -t empty data base table before loading

 -L Load ISAM file named in /etc/default/tipdbi.map matching -r name

 -L implies truncate the table (-t)

 -U Unload ISAM file named in /etc/default/tipdbi.map matching -r name

 -B Unload ISAM file named in /etc/default/tipdbi.map matching -r name in

 BCP format

 -l Load data from file named in /etc/default/tipdbi.map matching -r name

 -u Unload data to file named in /etc/default/tipdbi.map matching -r name

 -m n Stop loading after 'n' records

 -X Open input ISAM file with Exclusive lock

If the ISAM file has been defined in /etc/default/tipdbi.map (or your local
$HOME/.tipdbi.map) then you can reload the ISAM datafile into the data by
simply running:

dbiexpimp –L myrec

With the above example, dbiexpimp will scan the tipdbi.map file and find the
record (myrec) and then know which ‘schema’ to open.

Defining a Table to TIPFCS

To define a file which is really a table of a relational database. You must first
construct the MIRAM Schema and build it. Then, using SMFILE:

 Define File type as ORACLE (this may be changed to RDBMS later)

 Define Label/Path with the record name defined in the MIRAM
Schema

 Define FCS Server with the name of the database I/O module
({MIRAM Schema Name}io)

TIP DataBase Interface Reference

60 TIP/dbi II IP-634

TIP/ix fopen command

The TIP/ix fopen command (when run from the Unix shell prompt) has some
options to change the mode of the file inside the TIP system.

From Unix shell:

fopen -d filename schema

Sets file to be RDBMS using the named schema

fopen -d filename schema

Sets file to be RDBMS using the named schema

fopen -x filename

Sets file to be ISAM

From TIP shell:

fopen,dbi filename schema

Sets file to be RDBMS

fopen,isam filename

Sets file to be ISAM

For example:

fopen -d bmkacct bmark

fopen -d bmkcust bmark

fopen -d bmkcard bmark

fopen -x bmkacct "-A"

fopen -x bmkcust "-B"

fopen -x bmkcard

 Indexed File interface

 TIP/dbi II 61

Generate an ISAM Schema from Oracle/SQL

There is a utility called dbitosch.pc that will be supplied in source code

format. This program must be pre-processed with Oracle proc and compiled.
Once compiled it can be used to extract relational table structures from the
Oracle data dictionary to create a MIRAM Schema. You may have to edit the
result to add information about TABLE SPACE, User-id, password etc. You
would then process the MIRAM Schema with the TIP/dbi schema program
and build the I/O module. (Do not use the schema.ddl module since Oracle
already has the tables defined. Dbitosch takes the following command line
options:

Option Description

-c generate COBOL COPY books for each table

-C directory
generate the COBOL COPY books into this
directory

-S name specify the Schema name

-U userid Oracle User Id to connect to Oracle with

-P pass Oracle password to connect to Oracle with

Following the options is a list of table names to be built into the MIRAM
Schema definition. The following example constructs a schema named
FCSRDMS and generates COBOL COPY books for the Oracle tables ‘tspfile
inven orders parts’:

dbitosch -S FCSRDMS -U system -P manager \

 -C /source/books tspfile inven orders parts

A similar tool will be developed for SQL Server 2000.

TIP DataBase Interface Reference

62 TIP/dbi II IP-634

TIPFCS relative record number & Oracle

The TIPFCS interface to relational database will return a relative record
number for all I/O requests. This relative record number is computed from the
ROWID. With Oracle the ROWID is an 18-byte field while the TIPFCS relative
record number is only 4 bytes. These difference leads to some compromises
and restrictions.

Extended ROWIDs use a base 64 encoding of the physical address for each
row selected. For example, the following query

 SELECT ROWID, ename FROM emp

 WHERE deptno = 20;

might return the following row information:

ROWID ENAME

------------------ ----------

AAAAaoAATAAABrXAAA BORTINS

AAAAaoAATAAABrXAAE RUGGLES

AAAAaoAATAAABrXAAG CHEN

AAAAaoAATAAABrXAAN BLUMBERG

An extended ROWID has a four-piece format, OOOOOOFFFBBBBBBRRR:

Where:

OOOOOO
The data object number identifies the database segment
(AAAAao in the example). Schema objects in the same
segment, such as a cluster of tables, have the same data
object number.

FFF
The data file that contains the row (file AAT in the
example). File numbers are unique within a database.

BBBBBB
The data block that contains the row (block AAABrX in the
example). Block numbers are relative to their data file, not
table-space. Therefore, two rows with identical block
numbers could reside in two different data files of the same
table-space.

RRR The row in the block.

 Indexed File interface

 TIP/dbi II 63

We are hoping that the "data object number" and "datafile" do not change and
we'll just pickup the "data block" and "row".

 11111111

 012345678901234567

ROWID has a four-piece format, OOOOOOFFFBBBBBBRRR:

Since data block is 6*6 = 36 bits and row is 3*6 = 18 bits and we must
squeeze this into 32 bit we have a problem.

You may want to look at defining DATABASE BLOCK nnn RECORDS in the
schema. The default is now 2048 records maximum per database block.

DATABASE BLOCK 2048 RECORDS

The default is to take just the bottom 11 bits of RRR will be taken and just the
bottom 21 bits of BBBBBB will be taken. This means that no block should hold
more than 2048 rows and no tablespace file should have more than 2097151
blocks or this scheme will not work. If using an 8K block size the max file size
is then 16GB.

DATABASE BLOCK 4096 RECORDS

The default is to take just the bottom 12 bits of RRR will be taken and just the
bottom 22 bits of BBBBBB will be taken. This means that no block should hold
more than 4096 rows and no tablespace file should have more than 1048576
blocks or this scheme will not work. If using an 8K block size the max file size
is then 8GB.

DATABASE BLOCK 1024 RECORDS

The default is to take just the bottom 10 bits of RRR will be taken and just the
bottom 23 bits of BBBBBB will be taken. This means that no block should hold
more than 1024 rows and no tablespace file should have more than 4194303
blocks or this scheme will not work. If using an 8K block size the max file size
is then 32GB.

TIP DataBase Interface Reference

64 TIP/dbi II IP-634

TIP/dbi batch interface to Micro Focus Cobol

Micro Focus COBOL provides for a user written file handler. TIP/dbi provides
such a file handler for interfacing batch programs through TIP/dbi to Oracle.
To compile a batch COBOL program to use this file handler you would use the

option CALLFH”DBIXFH”. A sample Makefile follows.

MYTIP=../..

CFLAGS= $(CFLGS)

FLAGS = -gx -C "NOWARNING VSC2 IBMCOMP CALLFH\"DBIXFH\""

MFBAT = -P -Ox -C "NOWARNING VSC2 IBMCOMP CALLFH\"DBIXFH\" FCDREG"

BAT = -L$(TIPROOT)/lib –ldbixio –ldbirun –ldbi2 -lbat

BINDIR=$(MYTIP)/bin

.bat:

 cob $(MFBAT) -c -k $<

 cob $(MFBAT) $*.o -o $* -L$(LIBHOME) $(BAT)

 $(RM) $(@F).o $(@F).idy $(@F).int

 $(MV) $(@F) $(BINDIR)

The above Makefile is just a sample and you would update your own
procedure as needed.

The DBIXFH module will read through a control file called
/etc/default/tipdbi.map on the Unix system for each OPEN of the file.

If the OPEN is for a TIP/dbi (Oracle) table, then the DBIXFH module handles
the I/O requests. If the file is not found in the control file
(/etc/default/tipdbi.map) then DBIXFH just passes the I/O request

onto the normal COBOL file handler EXTFH.

A sample /etc/default/tipdbi.map file follows:

#TIP/dbi batch file mapping

#Path to Isam File, Table Name

[fcsrdms]

/u/tipsrc/tipfiles/tspfix TSPFILE

Define files for MCC TIP/dbi test

[mccsch]

/home1/mcc/files/cldetcum CDETCUM

/home1/mcc/files/clhdrcum CHDRCUM

/home1/mcc/files/corsdesc CORDESC

/home1/mcc/files/courreq.dates REQDATE

The name in square brackets is the schema name, which your application will
be using. If the line begins with #, then it is a comment line.

The software searched for the tipdbi.map file to be used. It first checks for a
$HOME/.tipdbi.map, then /etc/default/tipdbi.map and then

/etc/tipdbi.map.

 TIP/dbi batch interface to Micro Focus Cobol

 TIP/dbi II 65

Batch WHERE & ORDER BY clauses

In addition there is a new function code so that your application program may
supply the WHERE and ORDER BY clauses of a SELECT and place the file in
START mode.

WORKING-STORAGE SECTION.

01 TSPFH-WHERE-PACKET.

 05 FILLER PICTURE 9(4) COMP SYNC VALUE 24.

 05 FILLER PICTURE XX.

 05 FILLER PICTURE X(20)

 VALUE "Disk = '8417' ".

01 TSPFH-ORDER-PACKET.

 05 FILLER PICTURE 9(4) COMP SYNC VALUE 24.

 05 FILLER PICTURE XX.

 05 FILLER PICTURE X(20) VALUE "Telephone ".

 …

 COPY TC-DBISL.

 …

LINKAGE SECTION.

01 DBI-FH.

 COPY TC-DBIFH.

 …

PROCEDURE DIVISION.

 …

 SET ADDRESS OF DBI-FH TO ADDRESS OF FH--FCD OF TSPSEQ.

 SET FCD-WHERE-CLAUSE TO ADDRESS OF TSPFH-WHERE-PACKET.

 SET FCD-ORDER-CLAUSE TO ADDRESS OF TSPFH-ORDER-PACKET.

 CALL "DBIXFH" USING DBIFH-SELECT,

 DBI-FH.

 READ TSPSEQ.

The compile time option FCDREG is what allows you to access “ADDRESS
OF FH--FCD OF”.

TIP DataBase Interface Reference

66 TIP/dbi II IP-634

Batch SELECT column list

You may also limit the columns to be returned with the DBIFH-COLUMNS
function. If the table has a lot of columns but your only need a few and the
application is going to read a few columns from many records this option may
help improve performance by reducing the data exchanged with the database.

WORKING-STORAGE SECTION.

01 TSPFH-COLUMNS.

 05 FILLER PIC 9(4) COMP-4 VALUE 50.

 05 FILLER PIC X(48) VALUE

 "number1,company,noterminals".

 …

 COPY TC-DBISL.

 …

LINKAGE SECTION.

01 DBI-FH.

 COPY TC-DBIFH.

 …

PROCEDURE DIVISION.

 …

 SET ADDRESS OF DBI-FH TO ADDRESS OF FH--FCD OF TSPSEQ.

 SET FCD-SELECT-LIST TO ADDRESS OF TSPFH-COLUMNS.

 CALL "DBIXFH" USING DBIFH-COLUMNS,

 DBI-FH.

 READ TSPSEQ.

 TIP/dbi batch interface to Micro Focus Cobol

 TIP/dbi II 67

Online transaction WHERE & ORDER BY clauses

Online transactions use TIPFCS to access all data and TIP/ix TIPFCS
interface supports TIP/dbi by defining the file to be of type RDBMS and giving
the ‘schema’ name. Most of the TIPFCS functions are supported. In addition
the FCS-SELECT function has been added to allow application program to
supply special ORDER BY and WHERE clauses. For example:

 05 INVEN-SEL.

 10 SEL-LEN PICTURE 9(4) BINARY.

 10 FILLER PICTURE XX.

 10 SEL-TEXT PICTURE X(64).

 05 INVEN-ORD.

 10 ORD-LEN PICTURE 9(4) BINARY.

 10 FILLER PICTURE XX.

 10 ORD-TEXT PICTURE X(64).

 ...

 MOVE "QTY > 20" TO SEL-TEXT

 MOVE 13 TO SEL-LEN

 MOVE "PART_NUM,QTY" TO ORD-TEXT

 MOVE 16 TO ORD-LEN

 CALL "TIPFCS" USING FCS-SELECT

 INVEN-PACKET

 INVEN-SEL

 INVEN-ORD

 CALL "TIPFCS" USING FCS-GET

 INVEN-PACKET

 INVEN-RECORD

The file access is treated like an FCS-SETL, except that the positioning is lost
on any transaction end point, so you cannot keep it active across terminal I/O.
You may optionally omit the 4th parameter of FCS-SELECT. The length of the
text areas may from 4 to 1024.

TIP DataBase Interface Reference

68 TIP/dbi II IP-634

Online transaction SELECT column list

You may also limit the columns to be returned with the DBIFH-COLUMNS
function. If the table has a lot of columns but your only need a few and the
application is going to read a few columns from many records this option may
help improve performance by reducing the data exchanged with the database.

01 LIST-COLS.

 05 FILLER PICTURE 9(4) COMP-4 VALUE 50.

 05 FILLER PICTURE X(48) VALUE

 "number1,company,telephone,dpmgr,date*".

 01 ALL-COLS.

 05 FILLER PICTURE 9(4) COMP-4 VALUE 6.

 05 FILLER PICTURE X(4) VALUE "*".

…

PROCEDURE DIVISION …

CALL "TIPFCS" USING FCS-COLUMNS TSPFL-PACKET LIST-COLS.

CALL "TIPFCS" USING FCS-COLUMNS TSPFL-PACKET ALL-COLS.

Only the names columns plus any index columns will be read. This can be
used in combination with FCS-SELECT. On the next transaction end point, the
list of columns reverts back to all columns in the table. You can manually
revert back to all columns by setting the column name list to an asterisk "*".

The first field of the packet is a COMP-4 length and the value includes the 2
bytes for the length field. The length of the text areas may from 3 to 1024.

The FCS-GETUP, FCS-PUT, FCS-ADD functions will use all columns in the
table regardless of FCS-COLUMNS.

 TIP/dbi ODBC interface

 TIP/dbi II 69

TIP/dbi ODBC interface

TIP/dbi II interfaces with Oracle using Oracle Call Interface (OCI). The OCI module can
be optionally replaced with an ODBC module and then TIP/dbi can use any ODBC 3.5
compliant database. On Unix/Linux an ODBC driver manager is normally used and a
popular one is unixODBC which is available for free download at www.unixodbc.org.

To access Microsoft SQL Server you may also need a driver from Easysoft
(www.easysoft.com).

You can tell TIP/dbi that it should compile the schema for ODBC by specifying:

dbischema –T sql2005 myschema.sch

Or by adding TARGETDBMS IS ODBC to the start of the schema definition text file as
follows:

IDENTIFICATION DIVISION.

 SCHEMA NAME IS DMSSCH.

 INDEXSPACE "dbidx".

 TABLESPACE "dbdata".

 MAXIMUM IDLE 5000

 TARGETDBMS IS SQL2005

‘ODBC” indicates a generic ODBC database. You may also specify SQL2005 if using
Microsoft SQL server 2005 or later and then TIP/dbi will use some special features of
MS SQL Server.

For TIP/dbi on Unix/Linux to access an ODBC database like Microsoft SQL Server (2005
or later) you will also need an ODBC driver. This is available for a fee from Easysoft
(www.easysoft.com). Once installed you will need to setup the /etc/odbc.ini file and an
example follows:

[rjnxps]

Driver = Easysoft ODBC-SQL Server

Description = SQL Server DSN created during installation

Server = 192.168.1.131

Port = 1433

User = mydoman\myuid

Password = mypassword

Language = us_english

Database = master

Logging = No

LogFile = /tmp/odbc.log

QuotedId = Yes

AnsiNPW = Yes

Mars_Connection = Yes

In the above example you must define Mars_Connection = Yes as this normally defaults
to ‘No’. TIP/dbi requires this option to be enabled. You also need a /etc/odbcinst.ini
which is used by the ODBC driver manager.

[Easysoft ODBC-SQL Server]

Driver = /usr/local/easysoft/sqlserver/lib/libessqlsrv.so

Setup = /usr/local/easysoft/sqlserver/lib/libessqlsrvS.so

Threading = 0

FileUsage = 1

DontDLClose = 1

UsageCount = 2

http://www.unixodbc.org/
http://www.easysoft.com/

TIP DataBase Interface Reference

70 TIP/dbi II IP-634

ODBC Interactive utility

On Linux, TIP/dbi II also comes with a utility called dbisql which is an enhanced version
of the isql utility that comes with unixODBC. The enhanced version will collect several
input lines and executed them when it sees a line terminated with a semi-colon (;) or a
line that starts with the work ‘go’. Each command is committed as executed unless you
enter a command of ‘commit’. One ‘commit’ is executed then it batches the commands
into a transaction until the next ‘commit’ command. Once you have run dbischema to
create the SQL table definitions you could move to the schema.dd3 directory and run the
following command to define the tables to the database.

dbisql rjnxps <schema.ddl

Where ‘rjnxps’ is the name of your local database definition in the odbc.ini file and
schema is the name of the TIP/dbi II schema you defined.

MySQL Support

On Redhat Linux, MySQL comes with the operating system. For TIP/dbi to work
correctly, you need to configure MySQL to use the Innodb database engine.

You must install unixODBC and unixODBC-devel (use yum install).

A sample entry for MySQL in /etc/odbc.ini might look like the following:

[mytest]

Driver = MySQL

Description = ODBC Driver for local mySQL

Server = localhost

User = yourname

Password = yourpwd

Database = mytest

The corresponding entry in /etc/odbcinst.ini might look like:

[MySQL]

Description = ODBC for MySQL

Driver = /usr/lib/libmyodbc3.so

Setup = /usr/lib/libodbcmyS.so

FileUsage = 1

If you want to turn on ODBC tracing add the following to /etc/odbcinst.ini

[ODBC]

Trace = Yes

TraceFile = /tmp/sql.log

To disable tracing, change it to read Trace = No.

For MariaDB the entry in /etc/odbcinst.ini might look like:
[MySQL]

Description = ODBC for MySQL

Driver64 = /usr/lib64/libmaodbc.so

Setup64 = /usr/lib64/libodbcmyS.so

FileUsage = 1

 Sample DMS schema

 TIP/dbi II 71

Sample DMS schema

DMS/2200 sample Schema

 *

 * ***

 * * DMS/1100 TEST SCHEMA DESCRIPTION STATEMENTS *

 * ***

 *

 IDENTIFICATION DIVISION

 SCHEMA NAME IS DMS11 IN TIP FILE 39

 INDEXSPACE "TOOLS".

 TABLESPACE "USERS".

 DATA DIVISION

 *

 * ***

 * * DATABASE DATA NAMES *

 * ***

 *

 DATA NAME SECTION

 01 DBDN-CUST-AREA USAGE AREA-NAME CODE 10

 01 DBDN-PROD-AREA USAGE AREA-NAME CODE 11

 01 DBDN-ORD-AREA USAGE AREA-NAME CODE 63

 01 DBDN-FREE-LIMIT PIC 9(5)

 USAGE COMP CODE 12

 01 DBDN-FREE-COUNT PIC 9(5)

 USAGE COMP CODE 13

 01 DBDN-PAY-AREA USAGE AREA-NAME CODE 14

 01 DBDN-SDT-REC USAGE RECORD-NAME CODE 65

 01 DBDN-SDT-SET USAGE SET-NAME CODE 93

 **** FOLLOWING DATA NAMES ARE USED FOR UTILITY SOFTWARE.

 01 CM-RECORD-NAME USAGE RECORD-NAME CODE 122

 01 CM-AREA-NAME USAGE AREA-NAME CODE 123

 01 CM-SET-NAME USAGE SET-NAME CODE 124

 01 CM-AREA-KEY USAGE AREA-KEY CODE 125

 01 CM-DATABASE-KEY USAGE DATABASE-KEY CODE 126

 *

 * ***

 * * AREA DESCRIPTION STATEMENTS *

 * ***

 *

 AREA SECTION

 AREA CONTROL 2047 AREAS

 AREA LOOKS INCLUDE QUICK-BEFORE-LOOKS

 AREA NAME IS CUSTOMER-AREA.

 AREA CODE IS 10

 AREA MAPS TO TIP FILE

 ALLOCATE 224990 PAGES

 DYNAMICALLY EXPANDABLE TO 262143 PAGES

 PAGES ARE 1792 WORDS

 LOAD IS 85 PERCENT

 AREA NAME IS ORDER-AREA

 AREA CODE IS 20

 MODE IS DATA

 ALLOCATE 100 PAGES

 EXPANDABLE TO 260000 PAGES

 PAGES ARE 672 WORDS

 TRAINING QUALIFIER IS DMSCIF

 AREA NAME IS ORDER-AREA2

 AREA CODE IS 22

TIP DataBase Interface Reference

72 TIP/dbi II IP-634

 MODE IS DATA

 ALLOCATE 100 PAGES

 EXPANDABLE TO 260000 PAGES

 PAGES ARE 672 WORDS

 TRAINING QUALIFIER IS DMSCIF

 AREA NAME IS ORDER-INDEX

 AREA CODE IS 25

 MODE IS INDEX AREA

 TABLESPACE "TOOLS"

 AREA MAPS TO TIP FILE

 ALLOCATE 500 PAGES

 EXPANDABLE TO 32767 PAGES

 PAGES ARE 896 WORDS

 AREA NAME IS PRODUCT-AREA

 AREA CODE IS 30

 AREA MAPS TO TIP FILE

 ALLOCATE 224990 PAGES

 DYNAMICALLY EXPANDABLE TO 262143 PAGES

 PAGES ARE 1792 WORDS

 LOAD IS 85 PERCENT

 AREA NAME IS PRODUCT-AREA2

 AREA CODE IS 32

 AREA MAPS TO TIP FILE

 ALLOCATE 224990 PAGES

 DYNAMICALLY EXPANDABLE TO 262143 PAGES

 PAGES ARE 1792 WORDS

 LOAD IS 85 PERCENT

 AREA NAME IS PRODUCT-INDEX

 AREA CODE IS 35

 MODE IS INDEX AREA

 TABLESPACE "USERS"

 AREA MAPS TO TIP FILE

 ALLOCATE 500 PAGES

 EXPANDABLE TO 32767 PAGES

 PAGES ARE 896 WORDS

 AREA NAME IS PAYMENTS-AREA.

 AREA CODE IS 70

 MODE IS DATA

 ALLOCATE 8 PAGES

 1 OVERFLOW AT END

 EXPANDABLE TO 260000 PAGES

 PAGES ARE 448 WORDS

 TRAINING QUALIFIER IS DMSCIF

 *

 * ***

 * * RECORD DESCRIPTION STATEMENTS *

 * ***

 *

 RECORD SECTION.

 RECORD NAME CUSTOMER.

 RECORD CODE 611.

 LOCATION MODE IS CALC DMSCALC

 IN DBDN-CUST-AREA

 USING CUST-NO-611 DUPLICATES ARE NOT ALLOWED

 INDEX USING ASCENDING CUST-NAME-S-611 AS KEY 1

 WITHIN CUSTOMER-AREA

 RECORD MODE IS ASCII

 05 CUST-NO-611 PIC X(11).

 * COMMENT "CUSTOMER NUMBER. THERE IS A UNIQUE NUMBER FOR

 * EACH CUSTOMER IN THE FILE".

 05 CUST-NAME-S-611 PIC X(35).

 * COMMENT "CUSTOMER NAME ".

 05 CUST-ADDR-S-611 PIC X(30).

 Sample DMS schema

 TIP/dbi II 73

 * COMMENT "CUSTOMER ADDRESS".

 05 CUST-CREDIT PIC A(3).

 * COMMENT "CUSTOMER CREDIT RATING".

 88 EXCELLENT VALUE "AAA".

 05 CUST-BIG-611 PIC S9(14)V999 COMP-4.

 05 TEXT-611

 10 TXT-CHAR-611 PIC X OCCURS 100 TIMES

 05 FILLER PIC X(25).

 RECORD NAME CUST-ORDER.

 RECORD CODE 620.

 LOCATION MODE IS CALC DMSCALC

 IN DBDN-ORD-AREA

 USING FO-NO-620 DUPLICATES NOT ALLOWED.

 WITHIN ORDER-AREA

 WITHIN ORDER-AREA2.

 05 FO-NO-620 PIC 9(8) COMP-3.

 05 ORDER-TEXT.

 * COMMENT "FACTORY ORDER NUMBER".

 10 CUST-PO-NO-620 PIC X(18).

 * COMMENT "CUSTOMER PURCHASE ORDER NUMBER".

 10 FILLER PIC X(27).

 * COMMENT "RESERVED SPACE FOR FUTURE USE".

 10 DATE-SHIP-620 PIC X(6).

 * COMMENT "SHIP DATE OF THE ORDER

 * SHOULD BE FOUR DAYS BEFORE THE DATE REQUIRED

 * FORMAT IS MMDDYY".

 10 DATE-REQ-620 PIC X(6).

 10 DATE-NUM-620 REDEFINES DATE-REQ-620 PIC 9(6).

 * COMMENT "DATE REQUIRED BY THE CUSTOMER

 * FORMAT IS MMDDYY".

 10 DATE-PROM-620 PIC X(6).

 * COMMENT "DATE ORDER WAS PROMISED BY SALEMAN".

 05 TEST-TBL OCCURS 5 TIMES.

 10 ENTRY-CODE PIC XX.

 10 BIN-NUM PIC 999V9 BINARY.

 10 PAC-NUM PIC S9V99 COMP-3.

 05 TEST-TBL2 OCCURS 5 TIMES.

 10 BIN-NUM2 PIC 9999 BINARY.

 05 TEST-TBL3 OCCURS 5 TIMES.

 10 CODE-A PIC XX.

 10 CODE-B PIC 99.

 05 SMALL-BIN1 PIC 99 COMP.

 05 SMALL-BIN2 PIC 9 COMP.

 05 SMALL-BIN3 PIC S9 COMP.

 05 TEST-TBL4 OCCURS 5 TIMES.

 10 CODE-C PIC 9999 COMP.

 10 CODE-D OCCURS 5 TIMES PIC X.

 * COMMENT "Above tables to test Schema conversion"

 05 FILLER PIC X(32).

 * COMMENT "RESERVED SPACE FOR FUTURE USE".

 RECORD NAME ORDER-ITEM.

 RECORD CODE 621.

 LOCATION MODE VIA ITEM SET

 WITHIN ORDER-AREA

 WITHIN ORDER-AREA2.

 05 PROD-NO-621 PIC X(12).

 05 FILLER PIC XXX.

 05 LOT-NO-621 PIC X(7).

 05 FILLER PIC X(4).

 05 QTY-KEY.

 10 QTY-ORD-621 PIC S9(7)V9 COMP-4.

 10 QTY-SHIP-621 PIC S9(6) COMP-3.

 05 QTY-BIG-621 PIC S9(17) COMP-4.

 05 QTY-SEP-621 PIC S9(4)V99

 SIGN LEADING SEPARATE.

 05 QTY-TRL-621 PIC S9(4)V99

TIP DataBase Interface Reference

74 TIP/dbi II IP-634

 SIGN TRAILING SEPARATE.

 05 FILLER PIC X(20).

 RECORD NAME ORD-REMARK.

 RECORD CODE 622.

 LOCATION MODE DIRECT CM-DATABASE-KEY, DBDN-ORD-AREA

 WITHIN ORDER-AREA AREA.

 03 ORD-REM-CD-622.

 * COMMENT "GROUP LEVEL REFERRING TO COMPLETE REMARK".

 05 REMARK-CD-622 PIC X.

 * COMMENT "REMARK CODE".

 05 REMARK-SEQ-622 PIC X.

 * COMMENT "SEQUENCE OF REMARK".

 05 REMARK-622 PIC X(75).

 * COMMENT "REMARK TEXT".

 05 FILLER PIC XXX.

 * COMMENT "RESERVED SPACE FOR FUTURE USE".

 RECORD NAME PRODUCT.

 RECORD CODE 631.

 LOCATION MODE CALC

 IN DBDN-PROD-AREA USING PROD-NO-631 DUPLICATES NOT ALLOWED

 INDEX USING ASCENDING PROD-NO-631 AS KEY 1 DUPLICATES NOT

 WITHIN PRODUCT-AREA

 WITHIN PRODUCT-AREA2 INDEX AREA IS ORDER-INDEX.

 05 PROD-NO-631 PIC X(12).

 * COMMENT "PRODUCT NUMBER EACH PRODUCT HAS A

 * UNIQUE NUMBER".

 05 FILLER PIC XX.

 * COMMENT "RESERVED SPACE FOR FUTURE USE".

 05 PROD-DES-INT-631 PIC X(15).

 * COMMENT "INTERNAL DESCRIPTION OF PRODUCT".

 05 PROD-DES-EXT-631 PIC X(30).

 * COMMENT "EXTERNAL DESCRIPTION OF THE PRODUCT".

 05 FILLER PIC X(53).

 * COMMENT "RESERVED SPACE FOR FUTURE USE".

 RECORD NAME VENDOR.

 RECORD CODE 651.

 NUMERIC IS CHAR

 PROTECTED UPDATE

 LOCATION MODE IS INDEX SEQUENTIAL

 IN DBDN-PROD-AREA

 USING ASCENDING KEY VENDOR-NAME-651

 LINKS ARE NEXT

 DUPLICATES ARE NOT ALLOWED

 WITHIN PRODUCT-AREA INDEX AREA IS PRODUCT-INDEX

 WITHIN PRODUCT-AREA2 INDEX AREA IS PRODUCT-INDEX.

 05 VENDOR-NAME-651 PIC X(20).

 05 VENDOR-ID PIC 9(10).

 05 VENDOR-ADDR PIC X(30).

 05 FILLER PIC X(52).

 *

 RECORD NAME PAYMENT-BATCH.

 RECORD CODE 700.

 LOCATION MODE DIRECT

 WITHIN PAYMENTS-AREA AREA.

 * THE BATCH NUMBER WILL DETERMINE THE PAGE NUMBER IN THE AREA

 * THE RECORD NUMBER WILL ALWAYS BE SET TO 1

 05 PB-BATCH-NUM-700 PIC S9(5).

 05 PB-CLERK-NUM-700 PIC 9(4) BINARY.

 05 PB-BATCH-TOTAL-700 PIC 9(9)V99 COMP-3.

 *

 RECORD NAME PAYMENT-DETAIL.

 RECORD CODE 705.

 Sample DMS schema

 TIP/dbi II 75

 LOCATION MODE CALC

 IN DBDN-PAY-AREA

 USING PD-CUST-NO-705 DUPLICATES ARE ALLOWED.

 WITHIN PAYMENTS-AREA AREA.

 05 PD-CUST-NO-705 PIC X(11).

 05 PD-CUST-PO-NO-705 PIC X(18).

 05 PD-PAYMENT-AMT-705 PIC S9(7)V99 COMP-3.

 *

 RECORD NAME PAYMENT-NOTES.

 RECORD CODE 710.

 LOCATION MODE VIA DETAIL-NOTES SET.

 WITHIN PAYMENTS-AREA AREA.

 05 PN-COMMENT-710 PIC X(50).

 *

 RECORD NAME PAYMENT-NUTES.

 RECORD CODE 715.

 LOCATION MODE VIA DETAIL-NOTES SET

 INTERVAL 12 PAGES

 WITHIN PAYMENTS-AREA AREA.

 05 PN-COMMENT-715 PIC X(50).

 RECORD NAME PART-DETAIL.

 RECORD CODE 805.

 LOCATION MODE CALC

 IN DBDN-PAY-AREA

 USING PD-CUST-NO-805 DUPLICATES ARE LAST.

 REDEFINES PD-PART-TEMP

 IF PD-PART-TYPE = 'A' USE PD-PART-AMT-805

 WITHIN PAYMENTS-AREA AREA.

 05 PD-CUST-NO-805 PIC X(11).

 05 PD-CUST-PO-NO-805 PIC X(18).

 05 PD-PART-TYPE PIC X.

 05 PD-PART-TEMP PIC X(5).

 05 FILLER REDEFINES PD-PART-TEMP.

 10 PD-PART-AMT-805 PIC S9(7)V99 COMP-3.

 *

 RECORD NAME PART-NOTES.

 RECORD CODE 810.

 LOCATION MODE VIA PARTS-NOTES SET.

 WITHIN PAYMENTS-AREA AREA.

 05 PN-SORT-810 PIC X(8).

 05 PN-COMMENT-810 PIC X(50).

 *

 RECORD NAME PART-NUTES.

 RECORD CODE 815.

 LOCATION MODE VIA PARTS-NOTES SET.

 WITHIN PAYMENTS-AREA AREA.

 05 PN-SORT-815 PIC X(8).

 05 PN-COMMENT-815 PIC X(50).

 *

 RECORD NAME PART-NUTEZ.

 RECORD CODE 817.

 LOCATION MODE VIA PARTS-NOTES SET

 WITHIN PAYMENTS-AREA AREA.

 05 PN-SORT-817 PIC X(8).

 05 PN-COMMENT-817 PIC X(50).

 *

 *

 *

 * ***

 * * SET DESCRIPTION STATEMENTS *

 * ***

 *

 SET SECTION.

TIP DataBase Interface Reference

76 TIP/dbi II IP-634

 SET NAME ORDOR.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER CUSTOMER.

 MEMBER CUST-ORDER

 LINKED OWNER

 ASCENDING KEY FO-NO-620 DUPLICATES NOT ALLOWED

 MANDATORY AUTOMATIC.

 SET NAME ITEM.

 ORDER NEXT.

 MODE CHAIN LINKED PRIOR.

 OWNER CUST-ORDER.

 MEMBER ORDER-ITEM

 MANDATORY AUTOMATIC LINKED OWNER.

 SET NAME QTY.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER CUST-ORDER.

 MEMBER ORDER-ITEM ASCENDING KEY QTY-KEY DUPLICATES ALLOWED

 MANDATORY AUTOMATIC LINKED OWNER.

 SET NAME QTY-SHIP.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER CUST-ORDER.

 MEMBER ORDER-ITEM ASCENDING KEY QTY-SHIP-621

 DUPLICATES ALLOWED

 MANDATORY AUTOMATIC LINKED OWNER.

 SET NAME SPEC-REMARK.

 ORDER LAST.

 MODE CHAIN LINKED PRIOR.

 OWNER CUST-ORDER.

 MEMBER ORD-REMARK

 OPTIONAL MANUAL.

 SET NAME PROD-ORD.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER PRODUCT.

 MEMBER ORDER-ITEM

 OPTIONAL AUTOMATIC LINKED OWNER

 ASCENDING KEY LOT-NO-621 DUPLICATES NOT ALLOWED.

 SET NAME VEND-PROD.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER VENDOR.

 MEMBER PRODUCT

 MANDATORY AUTOMATIC LINKED OWNER

 ASCENDING KEY PROD-NO-631

 DUPLICATES NOT ALLOWED.

 SET NAME BATCH-DETAIL.

 ORDER PRIOR.

 MODE CHAIN LINKED PRIOR.

 OWNER PAYMENT-BATCH.

 MEMBER PAYMENT-DETAIL

 MANDATORY AUTOMATIC LINKED OWNER.

 SET NAME DETAIL-NOTES.

 ORDER PRIOR.

 MODE CHAIN LINKED PRIOR.

 OWNER PAYMENT-DETAIL

 MEMBER PAYMENT-NOTES

 OPTIONAL MANUAL

 MEMBER PAYMENT-NUTES

 OPTIONAL MANUAL.

 Sample DMS schema

 TIP/dbi II 77

 *

 SET NAME PAYMENT-NOTES.

 ORDER PRIOR.

 MODE CHAIN LINKED PRIOR.

 OWNER PAYMENT-DETAIL

 MEMBER PAYMENT-NOTES

 OPTIONAL MANUAL

 MEMBER PAYMENT-NUTES

 OPTIONAL MANUAL.

 *

 SET NAME PARTS-NOTES.

 ORDER SORTED.

 MODE CHAIN LINKED PRIOR.

 OWNER PART-DETAIL

 MEMBER PART-NOTES

 DESCENDING KEY PN-SORT-810 DUPLICATES NOT ALLOWED

 OPTIONAL MANUAL

 MEMBER PART-NUTES

 DESCENDING KEY PN-SORT-815 DUPLICATES NOT ALLOWED

 OPTIONAL MANUAL.

 MEMBER PART-NUTEZ

 DESCENDING KEY PN-SORT-817 DUPLICATES NOT ALLOWED

 OPTIONAL MANUAL.

 *

SQL schema

Read this over carefully and compare back to the original DMS schema to see
how things are structured and related. You should see that the generated DDL
is about as good as you could do manually. All record relationships are
maintained using typical methods used in any other relational database. This
would be given to Oracle sqlplus to define the table structures. This is also
read by dbigen along with the data mapping rules to produce the definition of
how TIP/dbi is to manage the database.

spool ddl

--

-- Data Base description for DMS11

--

-- Target DBMS System: Oracle Database Server

--

-- Created by TIP/dbi version: 2005/12/08 2.5 R0 - 0067 on platform LINUX

--

-- largest record is 212 bytes

--

--

-- Drop referential contraints for Sets

--

ALTER TABLE cust_order$20 DROP CONSTRAINT set_ordor_20;

ALTER TABLE cust_order$22 DROP CONSTRAINT set_ordor_22;

ALTER TABLE payment_detail DROP CONSTRAINT set_batch_detail;

--

-- Table 1, Rcsz= 198, SR620 : CUST-ORDER$20 : of ORDER-AREA :

-- 46 SQL columns

-- Estimated Max Row Size 288

--

DROP TABLE cust_order$20 CASCADE CONSTRAINTS;

CREATE TABLE cust_order$20 (

 fo_no_620 DECIMAL(8) NOT NULL,

 CONSTRAINT k0_calc_sr0620_20 UNIQUE(fo_no_620)

TIP DataBase Interface Reference

78 TIP/dbi II IP-634

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 cust_po_no_620 CHAR(18),

 filler01 CHAR(27),

 date_ship_620 CHAR(6),

 date_req_620 CHAR(6),

 date_prom_620 CHAR(6),

 entry_code01 CHAR(2),

 bin_num01 DECIMAL(9,1),

 pac_num01 DECIMAL(3,2),

 entry_code02 CHAR(2),

 bin_num02 DECIMAL(9,1),

 pac_num02 DECIMAL(3,2),

 entry_code03 CHAR(2),

 bin_num03 DECIMAL(9,1),

 pac_num03 DECIMAL(3,2),

 entry_code04 CHAR(2),

 bin_num04 DECIMAL(9,1),

 pac_num04 DECIMAL(3,2),

 entry_code05 CHAR(2),

 bin_num05 DECIMAL(9,1),

 pac_num05 DECIMAL(3,2),

 bin_num201 SMALLINT,

 bin_num202 SMALLINT,

 bin_num203 SMALLINT,

 bin_num204 SMALLINT,

 bin_num205 SMALLINT,

 test_tbl301 CHAR(4),

 test_tbl302 CHAR(4),

 test_tbl303 CHAR(4),

 test_tbl304 CHAR(4),

 test_tbl305 CHAR(4),

 small_bin1 DECIMAL(2),

 small_bin2 DECIMAL(2),

 small_bin3 DECIMAL(2),

 code_c01 SMALLINT,

 code_d01 CHAR(5),

 code_c02 SMALLINT,

 code_d02 CHAR(5),

 code_c03 SMALLINT,

 code_d03 CHAR(5),

 code_c04 SMALLINT,

 code_d04 CHAR(5),

 code_c05 SMALLINT,

 code_d05 CHAR(5),

 row_cust_order INTEGER NOT NULL,

 CONSTRAINT pk_cust_order$20 PRIMARY KEY(row_cust_order)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_ordor INTEGER NOT NULL

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 2, Rcsz= 198, SR620 : CUST-ORDER$22 : of ORDER-AREA2 :

-- 46 SQL columns

-- Estimated Max Row Size 288

--

DROP TABLE cust_order$22 CASCADE CONSTRAINTS;

CREATE TABLE cust_order$22 (

 fo_no_620 DECIMAL(8) NOT NULL,

 CONSTRAINT k0_calc_sr0620_22 UNIQUE(fo_no_620)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 cust_po_no_620 CHAR(18),

 filler01 CHAR(27),

 date_ship_620 CHAR(6),

 date_req_620 CHAR(6),

 date_prom_620 CHAR(6),

 entry_code01 CHAR(2),

 bin_num01 DECIMAL(9,1),

 pac_num01 DECIMAL(3,2),

 entry_code02 CHAR(2),

 bin_num02 DECIMAL(9,1),

 Sample DMS schema

 TIP/dbi II 79

 pac_num02 DECIMAL(3,2),

 entry_code03 CHAR(2),

 bin_num03 DECIMAL(9,1),

 pac_num03 DECIMAL(3,2),

 entry_code04 CHAR(2),

 bin_num04 DECIMAL(9,1),

 pac_num04 DECIMAL(3,2),

 entry_code05 CHAR(2),

 bin_num05 DECIMAL(9,1),

 pac_num05 DECIMAL(3,2),

 bin_num201 SMALLINT,

 bin_num202 SMALLINT,

 bin_num203 SMALLINT,

 bin_num204 SMALLINT,

 bin_num205 SMALLINT,

 test_tbl301 CHAR(4),

 test_tbl302 CHAR(4),

 test_tbl303 CHAR(4),

 test_tbl304 CHAR(4),

 test_tbl305 CHAR(4),

 small_bin1 DECIMAL(2),

 small_bin2 DECIMAL(2),

 small_bin3 DECIMAL(2),

 code_c01 SMALLINT,

 code_d01 CHAR(5),

 code_c02 SMALLINT,

 code_d02 CHAR(5),

 code_c03 SMALLINT,

 code_d03 CHAR(5),

 code_c04 SMALLINT,

 code_d04 CHAR(5),

 code_c05 SMALLINT,

 code_d05 CHAR(5),

 row_cust_order INTEGER NOT NULL,

 CONSTRAINT pk_cust_order$22 PRIMARY KEY(row_cust_order)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_ordor INTEGER NOT NULL

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 3, Rcsz= 212, SR611 : CUSTOMER : 7 SQL columns

-- Estimated Max Row Size 212

--

DROP TABLE customer CASCADE CONSTRAINTS;

CREATE TABLE customer (

 cust_no_611 CHAR(11) NOT NULL,

 CONSTRAINT k0_customer UNIQUE(cust_no_611)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 cust_name_s_611 CHAR(35) NOT NULL,

 cust_addr_s_611 CHAR(30),

 cust_credit CHAR(3),

 cust_big_611 DECIMAL(17,3),

 text_611 CHAR(100),

 row_customer INTEGER NOT NULL,

 CONSTRAINT pk_customer PRIMARY KEY(row_customer)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

 CREATE INDEX k1_customer ON customer

 (cust_name_s_611, row_customer)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Table 4, Rcsz= 80, SR622 : ORD-REMARK : 7 SQL columns

-- Estimated Max Row Size 104

--

DROP TABLE ord_remark CASCADE CONSTRAINTS;

CREATE TABLE ord_remark (

 cd CHAR(1),

 seq CHAR(1),

TIP DataBase Interface Reference

80 TIP/dbi II IP-634

 remark CHAR(75),

 row_ord_remark INTEGER NOT NULL,

 CONSTRAINT pk_ord_remark PRIMARY KEY(row_ord_remark)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 aid_spec_remark INTEGER,

 own_spec_remark INTEGER,

 pos_spec_remark FLOAT

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 5, Rcsz= 76, SR621 : ORDER-ITEM$20 : of ORDER-AREA :

-- 19 SQL columns

-- Estimated Max Row Size 124

--

DROP TABLE order_item$20 CASCADE CONSTRAINTS;

CREATE TABLE order_item$20 (

 prod_no_621 CHAR(12),

 filler01 CHAR(3),

 lot_no_621 CHAR(7) NOT NULL,

 filler02 CHAR(4),

 qty_ord_621 DECIMAL(18,1) NOT NULL,

 qty_ship_621 DECIMAL(6) NOT NULL,

 qty_big_621 DECIMAL(17),

 qty_sep_621 DECIMAL(7,2),

 qty_trl_621 DECIMAL(7,2),

 row_order_item INTEGER NOT NULL,

 CONSTRAINT pk_order_item$20 PRIMARY KEY(row_order_item)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 aid_item INTEGER NOT NULL,

 own_item INTEGER NOT NULL,

 pos_item FLOAT NOT NULL,

 aid_qty INTEGER NOT NULL,

 own_qty INTEGER NOT NULL,

 aid_qty_ship INTEGER NOT NULL,

 own_qty_ship INTEGER NOT NULL,

 aid_prod_ord INTEGER,

 own_prod_ord INTEGER

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 6, Rcsz= 76, SR621 : ORDER-ITEM$22 : of ORDER-AREA2 :

-- 19 SQL columns

-- Estimated Max Row Size 124

--

DROP TABLE order_item$22 CASCADE CONSTRAINTS;

CREATE TABLE order_item$22 (

 prod_no_621 CHAR(12),

 filler01 CHAR(3),

 lot_no_621 CHAR(7) NOT NULL,

 filler02 CHAR(4),

 qty_ord_621 DECIMAL(18,1) NOT NULL,

 qty_ship_621 DECIMAL(6) NOT NULL,

 qty_big_621 DECIMAL(17),

 qty_sep_621 DECIMAL(7,2),

 qty_trl_621 DECIMAL(7,2),

 row_order_item INTEGER NOT NULL,

 CONSTRAINT pk_order_item$22 PRIMARY KEY(row_order_item)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 aid_item INTEGER NOT NULL,

 own_item INTEGER NOT NULL,

 pos_item FLOAT NOT NULL,

 aid_qty INTEGER NOT NULL,

 own_qty INTEGER NOT NULL,

 aid_qty_ship INTEGER NOT NULL,

 own_qty_ship INTEGER NOT NULL,

 aid_prod_ord INTEGER,

 own_prod_ord INTEGER

)

 STORAGE (FREELISTS 3)

 Sample DMS schema

 TIP/dbi II 81

 TABLESPACE USERS;

--

-- Table 7, Rcsz= 35, SR805 : PART-DETAIL : 6 SQL columns

-- Estimated Max Row Size 60

--

DROP TABLE part_detail CASCADE CONSTRAINTS;

CREATE TABLE part_detail (

 cust_no_805 CHAR(11) NOT NULL,

 cust_po_no_805 CHAR(18),

 part_type CHAR(1),

 part_temp CHAR(5),

 part_amt_805 DECIMAL(9,2),

 row_part_detail INTEGER NOT NULL,

 CONSTRAINT pk_part_detail PRIMARY KEY(row_part_detail)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

 CREATE INDEX k0_part_detail ON part_detail

 (cust_no_805, row_part_detail)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Table 8, Rcsz= 58, SR810 : PART-NOTES : 4 SQL columns

-- Estimated Max Row Size 76

--

DROP TABLE part_notes CASCADE CONSTRAINTS;

CREATE TABLE part_notes (

 pn_sort_810 CHAR(8) NOT NULL,

 pn_comment_810 CHAR(50),

 row_part_notes INTEGER NOT NULL,

 CONSTRAINT pk_part_notes PRIMARY KEY(row_part_notes)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_parts_notes INTEGER

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 9, Rcsz= 58, SR815 : PART-NUTES : 4 SQL columns

-- Estimated Max Row Size 76

--

DROP TABLE part_nutes CASCADE CONSTRAINTS;

CREATE TABLE part_nutes (

 pn_sort_815 CHAR(8) NOT NULL,

 pn_comment_815 CHAR(50),

 row_part_nutes INTEGER NOT NULL,

 CONSTRAINT pk_part_nutes PRIMARY KEY(row_part_nutes)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_parts_notes INTEGER

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 10, Rcsz= 58, SR817 : PART-NUTEZ : 4 SQL columns

-- Estimated Max Row Size 76

--

DROP TABLE part_nutez CASCADE CONSTRAINTS;

CREATE TABLE part_nutez (

 pn_sort_817 CHAR(8) NOT NULL,

 pn_comment_817 CHAR(50),

 row_part_nutez INTEGER NOT NULL,

 CONSTRAINT pk_part_nutez PRIMARY KEY(row_part_nutez)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_parts_notes INTEGER

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 11, Rcsz= 13, SR700 : PAYMENT-BATCH : 4 SQL columns

-- Estimated Max Row Size 36

--

DROP TABLE payment_batch CASCADE CONSTRAINTS;

TIP DataBase Interface Reference

82 TIP/dbi II IP-634

CREATE TABLE payment_batch (

 batch_num DECIMAL(5),

 clerk_num SMALLINT,

 batch_total DECIMAL(11,2),

 row_payment_batch INTEGER NOT NULL,

 CONSTRAINT pk_payment_batch PRIMARY KEY(row_payment_batch)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 12, Rcsz= 34, SR705 : PAYMENT-DETAIL : 6 SQL columns

-- Estimated Max Row Size 64

--

DROP TABLE payment_detail CASCADE CONSTRAINTS;

CREATE TABLE payment_detail (

 cust_no CHAR(11) NOT NULL,

 cust_po_no CHAR(18),

 payment_amt DECIMAL(9,2),

 row_payment_detail INTEGER NOT NULL,

 CONSTRAINT pk_payment_detail PRIMARY KEY(row_payment_detail)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_batch_detail INTEGER NOT NULL,

 pos_batch_detail FLOAT NOT NULL

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

 CREATE INDEX k0_payment_detail ON payment_detail

 (cust_no)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Table 13, Rcsz= 50, SR710 : PAYMENT-NOTES : 6 SQL columns

-- Estimated Max Row Size 80

--

DROP TABLE payment_notes CASCADE CONSTRAINTS;

CREATE TABLE payment_notes (

 pn_comment_710 CHAR(50),

 row_payment_notes INTEGER NOT NULL,

 CONSTRAINT pk_payment_notes PRIMARY KEY(row_payment_notes)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_detail_notes INTEGER,

 pos_detail_notes FLOAT,

 own_payment_notes INTEGER,

 pos_payment_notes FLOAT

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 14, Rcsz= 50, SR715 : PAYMENT-NUTES : 6 SQL columns

-- Estimated Max Row Size 80

--

DROP TABLE payment_nutes CASCADE CONSTRAINTS;

CREATE TABLE payment_nutes (

 pn_comment_715 CHAR(50),

 row_payment_nutes INTEGER NOT NULL,

 CONSTRAINT pk_payment_nutes PRIMARY KEY(row_payment_nutes)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 own_detail_notes INTEGER,

 pos_detail_notes FLOAT,

 own_payment_notes INTEGER,

 pos_payment_notes FLOAT

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 15, Rcsz= 112, SR631 : PRODUCT$30 : of PRODUCT-AREA :

-- 7 SQL columns

-- Estimated Max Row Size 84

--

DROP TABLE product$30 CASCADE CONSTRAINTS;

CREATE TABLE product$30 (

 Sample DMS schema

 TIP/dbi II 83

 prod_no_631 CHAR(12) NOT NULL,

 CONSTRAINT k0_calc_sr0631_30 UNIQUE(prod_no_631)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 filler01 CHAR(2),

 prod_des_int_631 CHAR(15),

 prod_des_ext_631 CHAR(30),

 row_product INTEGER NOT NULL,

 CONSTRAINT pk_product$30 PRIMARY KEY(row_product)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 aid_vend_prod INTEGER NOT NULL,

 own_vend_prod INTEGER NOT NULL

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 16, Rcsz= 112, SR631 : PRODUCT$32 : of PRODUCT-AREA2 :

-- 7 SQL columns

-- Estimated Max Row Size 84

--

DROP TABLE product$32 CASCADE CONSTRAINTS;

CREATE TABLE product$32 (

 prod_no_631 CHAR(12) NOT NULL,

 CONSTRAINT k0_calc_sr0631_32 UNIQUE(prod_no_631)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 filler01 CHAR(2),

 prod_des_int_631 CHAR(15),

 prod_des_ext_631 CHAR(30),

 row_product INTEGER NOT NULL,

 CONSTRAINT pk_product$32 PRIMARY KEY(row_product)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 aid_vend_prod INTEGER NOT NULL,

 own_vend_prod INTEGER NOT NULL

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 17, Rcsz= 112, SR651 : VENDOR$30 : of PRODUCT-AREA :

-- 4 SQL columns

-- Estimated Max Row Size 72

--

DROP TABLE vendor$30 CASCADE CONSTRAINTS;

CREATE TABLE vendor$30 (

 name_651 CHAR(20) NOT NULL,

 CONSTRAINT k1_index_01_0651_30 UNIQUE(name_651)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 id CHAR(10),

 addr CHAR(30),

 row_vendor INTEGER NOT NULL,

 CONSTRAINT pk_vendor$30 PRIMARY KEY(row_vendor)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

--

-- Table 18, Rcsz= 112, SR651 : VENDOR$32 : of PRODUCT-AREA2 :

-- 4 SQL columns

-- Estimated Max Row Size 72

--

DROP TABLE vendor$32 CASCADE CONSTRAINTS;

CREATE TABLE vendor$32 (

 name_651 CHAR(20) NOT NULL,

 CONSTRAINT k1_index_01_0651_32 UNIQUE(name_651)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS,

 id CHAR(10),

 addr CHAR(30),

 row_vendor INTEGER NOT NULL,

 CONSTRAINT pk_vendor$32 PRIMARY KEY(row_vendor)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE TOOLS

)

 STORAGE (FREELISTS 3)

 TABLESPACE USERS;

TIP DataBase Interface Reference

84 TIP/dbi II IP-634

--

-- Set definitions

--

--

-- Set: ORDOR ORDER SORTED NDUP

-- OWNER CUSTOMER

-- MEMBER CUST-ORDER$20 FO-NO-620 (Id 200620) length 9

-- MEMBER CUST-ORDER$22 FO-NO-620 (Id 220620) length 9

--

DROP TABLE ordor CASCADE CONSTRAINTS;

CREATE TABLE ordor (

 own_ordor INTEGER NOT NULL,

-- Member sort field FO-NO-620

 pos_ordor DECIMAL(9) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_ordor

 PRIMARY KEY (own_ordor, pos_ordor, member_id)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_ordor ON ordor (member_id, member_row);

--

-- Set: ITEM ORDER NEXT

-- OWNER CUST-ORDER Multi-Area

-- MEMBER ORDER-ITEM$20 VIA (Id 200621)

-- MEMBER ORDER-ITEM$22 VIA (Id 220621)

--

DROP TABLE item CASCADE CONSTRAINTS;

CREATE TABLE item (

 aid_item INTEGER NOT NULL,

 own_item INTEGER NOT NULL,

 pos_item FLOAT NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_item

 PRIMARY KEY (aid_item,

 own_item, pos_item)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_item ON item (member_id, member_row);

--

-- Set: QTY ORDER SORTED DUPS

-- OWNER CUST-ORDER Multi-Area

-- MEMBER ORDER-ITEM$20 QTY-ORD-621 (Id 200621) length 9

-- MEMBER ORDER-ITEM$22 QTY-ORD-621 (Id 220621) length 9

--

DROP TABLE qty CASCADE CONSTRAINTS;

CREATE TABLE qty (

 aid_qty INTEGER NOT NULL,

 own_qty INTEGER NOT NULL,

-- Member sort field QTY-ORD-621

-- Member sort field QTY-SHIP-621

 pos_qty DECIMAL(18,1) NOT NULL,

 pos_qty1 DECIMAL(6) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_qty ON qty (member_id, member_row);

CREATE INDEX pk_qty ON qty

 (aid_qty,own_qty, pos_qty ,

 pos_qty1, member_id, member_row)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Set: QTY-SHIP ORDER SORTED DUPS

-- OWNER CUST-ORDER Multi-Area

-- MEMBER ORDER-ITEM$20 QTY-SHIP-621 (Id 200621) length 7

-- MEMBER ORDER-ITEM$22 QTY-SHIP-621 (Id 220621) length 7

--

 Sample DMS schema

 TIP/dbi II 85

DROP TABLE qty_ship CASCADE CONSTRAINTS;

CREATE TABLE qty_ship (

 aid_qty_ship INTEGER NOT NULL,

 own_qty_ship INTEGER NOT NULL,

-- Member sort field QTY-SHIP-621

 pos_qty_ship DECIMAL(7) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_qty_ship ON qty_ship (member_id, member_row);

CREATE INDEX pk_qty_ship ON qty_ship

 (aid_qty_ship,own_qty_ship, pos_qty_ship, member_id, member_row)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Set: SPEC-REMARK ORDER LAST

-- OWNER CUST-ORDER Multi-Area

-- MEMBER ORD-REMARK

--

CREATE INDEX spec_remark ON ord_remark

 (

 aid_spec_remark,

 own_spec_remark,

 pos_spec_remark

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Set: PROD-ORD ORDER SORTED NDUP

-- OWNER PRODUCT Multi-Area

-- MEMBER ORDER-ITEM$20 LOT-NO-621 (Id 200621) length 7

-- MEMBER ORDER-ITEM$22 LOT-NO-621 (Id 220621) length 7

--

DROP TABLE prod_ord CASCADE CONSTRAINTS;

CREATE TABLE prod_ord (

 aid_prod_ord INTEGER NOT NULL,

 own_prod_ord INTEGER NOT NULL,

-- Member sort field LOT-NO-621

 pos_prod_ord CHAR(7) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_prod_ord

 PRIMARY KEY (aid_prod_ord,

 own_prod_ord, pos_prod_ord, member_id)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_prod_ord ON prod_ord (member_id, member_row);

--

-- Set: VEND-PROD ORDER SORTED NDUP

-- OWNER VENDOR Multi-Area

-- MEMBER PRODUCT$30 PROD-NO-631 (Id 300631) length 12

-- MEMBER PRODUCT$32 PROD-NO-631 (Id 320631) length 12

--

DROP TABLE vend_prod CASCADE CONSTRAINTS;

CREATE TABLE vend_prod (

 aid_vend_prod INTEGER NOT NULL,

 own_vend_prod INTEGER NOT NULL,

-- Member sort field PROD-NO-631

 pos_vend_prod CHAR(12) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_vend_prod

 PRIMARY KEY (aid_vend_prod,

 own_vend_prod, pos_vend_prod, member_id)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_vend_prod ON vend_prod (member_id, member_row);

--

-- Set: BATCH-DETAIL ORDER PRIOR

-- OWNER PAYMENT-BATCH

-- MEMBER PAYMENT-DETAIL

--

TIP DataBase Interface Reference

86 TIP/dbi II IP-634

CREATE UNIQUE INDEX batch_detail ON payment_detail

 (

 own_batch_detail,

 pos_batch_detail

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

--

-- Set: DETAIL-NOTES ORDER PRIOR

-- OWNER PAYMENT-DETAIL

-- MEMBER PAYMENT-NOTES VIA (Id 700710)

-- MEMBER PAYMENT-NUTES VIA (Id 700715)

--

DROP TABLE detail_notes CASCADE CONSTRAINTS;

CREATE TABLE detail_notes (

 own_detail_notes INTEGER NOT NULL,

 pos_detail_notes FLOAT NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_detail_notes

 PRIMARY KEY (own_detail_notes, pos_detail_notes)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_detail_notes ON detail_notes (member_id, member_row);

--

-- Set: PAYMENT-NOTES ORDER PRIOR

-- OWNER PAYMENT-DETAIL

-- MEMBER PAYMENT-NOTES (Id 700710)

-- MEMBER PAYMENT-NUTES (Id 700715)

--

DROP TABLE S_payment_notes CASCADE CONSTRAINTS;

CREATE TABLE S_payment_notes (

 own_payment_notes INTEGER NOT NULL,

 pos_payment_notes FLOAT NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_payment_notes

 PRIMARY KEY (own_payment_notes, pos_payment_notes)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_payment_notes ON S_payment_notes (member_id, member_row);

--

-- Set: PARTS-NOTES ORDER SORTED NDUP

-- OWNER PART-DETAIL

-- MEMBER PART-NOTES VIA PN-SORT-810 (Id 700810) length 8

-- MEMBER PART-NUTES VIA PN-SORT-815 (Id 700815) length 8

-- MEMBER PART-NUTEZ VIA PN-SORT-817 (Id 700817) length 8

--

DROP TABLE parts_notes CASCADE CONSTRAINTS;

CREATE TABLE parts_notes (

 own_parts_notes INTEGER NOT NULL,

-- Member sort field PN-SORT-810

 pos_parts_notes CHAR(8) NOT NULL,

 member_id INTEGER NOT NULL,

 member_row INTEGER NOT NULL,

 CONSTRAINT pk_parts_notes

 PRIMARY KEY (own_parts_notes, pos_parts_notes, member_id)

)

 STORAGE (FREELISTS 3) TABLESPACE TOOLS;

CREATE UNIQUE INDEX x_parts_notes ON parts_notes (member_id, member_row);

--

-- Most columns in any table was 46

-- Most indexes on any table was 4

--

-- Sequences for Unique DBKEY values for each DMS Record

--

DROP SEQUENCE dbk_cust_order$20;

CREATE SEQUENCE dbk_cust_order$20 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_cust_order$22;

CREATE SEQUENCE dbk_cust_order$22 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_customer;

CREATE SEQUENCE dbk_customer START WITH 1 INCREMENT BY 1 CACHE 5;

 Sample DMS schema

 TIP/dbi II 87

DROP SEQUENCE dbk_ord_remark;

CREATE SEQUENCE dbk_ord_remark START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_order_item$20;

CREATE SEQUENCE dbk_order_item$20 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_order_item$22;

CREATE SEQUENCE dbk_order_item$22 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_part_detail;

CREATE SEQUENCE dbk_part_detail START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_part_notes;

CREATE SEQUENCE dbk_part_notes START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_part_nutes;

CREATE SEQUENCE dbk_part_nutes START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_part_nutez;

CREATE SEQUENCE dbk_part_nutez START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_payment_batch;

CREATE SEQUENCE dbk_payment_batch START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_payment_detail;

CREATE SEQUENCE dbk_payment_detail START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_payment_notes;

CREATE SEQUENCE dbk_payment_notes START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_payment_nutes;

CREATE SEQUENCE dbk_payment_nutes START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_product$30;

CREATE SEQUENCE dbk_product$30 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_product$32;

CREATE SEQUENCE dbk_product$32 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_vendor$30;

CREATE SEQUENCE dbk_vendor$30 START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_vendor$32;

CREATE SEQUENCE dbk_vendor$32 START WITH 1 INCREMENT BY 1 CACHE 5;

--

-- Sequences for Positioning values for DMS Sets

--

DROP SEQUENCE posxspec_remark;

CREATE SEQUENCE posxspec_remark START WITH 1 INCREMENT BY 1 CACHE 8;

--

-- For Resequencing Position values for NEXT/PRIOR Sets

--

DROP SEQUENCE posxitem;

CREATE SEQUENCE posxitem START WITH 1 INCREMENT BY 1 CACHE

10;

DROP SEQUENCE posxbatch_detail;

CREATE SEQUENCE posxbatch_detail START WITH 1 INCREMENT BY 1 CACHE

10;

DROP SEQUENCE posxdetail_notes;

CREATE SEQUENCE posxdetail_notes START WITH 1 INCREMENT BY 1 CACHE

10;

DROP SEQUENCE posxpayment_notes;

CREATE SEQUENCE posxpayment_notes START WITH 1 INCREMENT BY 1 CACHE

10;

--

-- Define referential constraints for Sets

--

ALTER TABLE cust_order$20 ADD (

 CONSTRAINT set_ordor_20

 FOREIGN KEY (own_ordor)

 REFERENCES customer (row_customer)

);

ALTER TABLE cust_order$22 ADD (

 CONSTRAINT set_ordor_22

 FOREIGN KEY (own_ordor)

 REFERENCES customer (row_customer)

);

ALTER TABLE payment_detail ADD (

 CONSTRAINT set_batch_detail

 FOREIGN KEY (own_batch_detail)

 REFERENCES payment_batch (row_payment_batch)

TIP DataBase Interface Reference

88 TIP/dbi II IP-634

);

spool OFF

Data Mapping rules

The data-mapping file describes where every field of each DMS record is. For
each DMS record field it defines the table name and column name where the
data can be found. By parsing the SQL DDL, dbigen will know what indexes
and constraints are available for facilitate reaching the data. Dbigen will
optimize all paths to the data and then generate the run-time code to support
the defined structures.

If you want a different SQL structure, then you are free to make changes or
invent your own and then create the data-mapping rules that define how to get
the data from the SQL database that the DMS records have defined.

The more general syntax for defining the data-mapping rules follows:

DMS SCHEMA IS “dms schema file name”

SQL SCHEMA IS “SQL DDL file name”

RECORD <dms-rec-name> [AREA <area-name>] {

 LOCATION INDEX n IS <index-name>;

 LOCATION CALC IS <index-name>;

 LOCATION DIRECT;

 DBKEY IS <table.column>;

 INDEX n IS <index-name>;

 <fld1> IS <table.column1>;

 <fldx> IS <constant>;

 IF <expr> THEN …fields… ELSE …fields… ;

 IF <expr> THEN …fields… ;

 <fldz> IS <function> (<table.column>,

…params…);

 <fldn> IS <table.column>

}

…fields… could be one or more of:

 <fld1> IS <table.column1>;

 <fldx> IS <constant>;

 { …fields… }

SET <dms-set-name> {

 Reference <member.column> is <owner.column>

 ORDER BY <member.column1> [DESC|ASC];

}

 Sample DMS schema

 TIP/dbi II 89

If the COBOL data item is in an OCCURS, then the data mapping rules would
indicate which occurrence is being referenced. For example:

 05 MYTBL PIC X(5) OCCURS 3 TIMES.

Would be mapped as:

 mytbl(1) IS myrec.mytbl01;

 mytbl(2) IS myrec.mytbl02;

 mytbl(3) IS myrec.mytbl03;

 mytbl(4) IS myrec.mytbl04;

 mytbl(5) IS myrec.mytbl05;

If the COBOL data items had been combined (aka. FOLDed) into one column
then the data mapping rule may look like:

 mytbl(1) IS myrec.mytbl[1:5];

 mytbl(2) IS myrec.mytbl[6:5];

 mytbl(3) IS myrec.mytbl[11:5];

 mytbl(4) IS myrec.mytbl[16:5];

 mytbl(5) IS myrec.mytbl[21:5];

The COBOL data item may be followed by subscripts inside parenthesis.
When a SQL column holds more than one COBOL data item, the 1 relative
position and length is defined inside square brackets.

For each DMS record, the data-mapping file describes each field and what
table holds the data. It also describes which column holds the numeric DBKEY
value for the record and which indexes represent the CALC key and DMS
indexes.

For each DMS set, the column used to reference the owner of the set is listed,
the column used for positioning members is listed and the ORDER BY to fetch
the members is listed.

Data Mapping REDEFINES

For the example of REDEFINES on the previous pages as follows:

RECORD MYREC

LOCATION MODE xxxxxx

REDEFINES PART1

IF FIELD1 = “NUM” USE FILLER-1

WITHIN MYAREA.

05 THE-RECORD.

 10 FIELD1 PIC X(5).

 10 PART1 PIC X(10).

 10 FILLER-1 REDEFINES PART1.

 15 FIELD2 PIC S9(7)V99 COMP-3.

 15 FIELD3 PIC S9(7)V99 COMP-3.

The data mapping rules would look like the following:

TIP DataBase Interface Reference

90 TIP/dbi II IP-634

Record MYREC {

...

 FIELD1 is myrec.field1;

 IF FIELD1 == “NUM” THEN {

 FIELD2 is myrec.field2;

 FIELD3 is myrec.field3;

 } ELSE {

 PART1 is myrec.part1;

 };

}

Sample Data Mapping rules

The following would be automatically generated by dbischema and is used by
dbigen to generate the final definition of how TIP/dbi is to manage the
database.

DMS Schema is "dms11";

SOURCE IS DMS2200;

SQL DDL IS "dms11.ddl";

RECORD CUST-ORDER$20 {

 AREA ORDER-AREA;

 CALC IS k0_calc_sr0620_20;

 DBKEY IS cust_order$20.row_cust_order

 VIA SEQUENCE dbk_cust_order$20;

 FO-NO-620 is cust_order$20.fo_no_620;

 CUST-PO-NO-620 is cust_order$20.cust_po_no_620;

 FILLER01 is cust_order$20.filler01;

 DATE-SHIP-620 is cust_order$20.date_ship_620;

 DATE-REQ-620 is cust_order$20.date_req_620;

 DATE-PROM-620 is cust_order$20.date_prom_620;

 ENTRY-CODE(1) is cust_order$20.entry_code01;

 BIN-NUM(1) is cust_order$20.bin_num01;

 PAC-NUM(1) is cust_order$20.pac_num01;

 ENTRY-CODE(2) is cust_order$20.entry_code02;

 BIN-NUM(2) is cust_order$20.bin_num02;

 PAC-NUM(2) is cust_order$20.pac_num02;

 ENTRY-CODE(3) is cust_order$20.entry_code03;

 BIN-NUM(3) is cust_order$20.bin_num03;

 PAC-NUM(3) is cust_order$20.pac_num03;

 ENTRY-CODE(4) is cust_order$20.entry_code04;

 BIN-NUM(4) is cust_order$20.bin_num04;

 PAC-NUM(4) is cust_order$20.pac_num04;

 ENTRY-CODE(5) is cust_order$20.entry_code05;

 BIN-NUM(5) is cust_order$20.bin_num05;

 PAC-NUM(5) is cust_order$20.pac_num05;

 BIN-NUM2(1) is cust_order$20.bin_num201;

 BIN-NUM2(2) is cust_order$20.bin_num202;

 BIN-NUM2(3) is cust_order$20.bin_num203;

 BIN-NUM2(4) is cust_order$20.bin_num204;

 BIN-NUM2(5) is cust_order$20.bin_num205;

 TEST-TBL3(1) is cust_order$20.test_tbl301;

 TEST-TBL3(2) is cust_order$20.test_tbl302;

 TEST-TBL3(3) is cust_order$20.test_tbl303;

 TEST-TBL3(4) is cust_order$20.test_tbl304;

 TEST-TBL3(5) is cust_order$20.test_tbl305;

 SMALL-BIN1 is cust_order$20.small_bin1;

 SMALL-BIN2 is cust_order$20.small_bin2;

 SMALL-BIN3 is cust_order$20.small_bin3;

 CODE-C(1) is cust_order$20.code_c01;

 CODE-D(1) [1:5] is cust_order$20.code_d01;

 CODE-C(2) is cust_order$20.code_c02;

 Sample DMS schema

 TIP/dbi II 91

 CODE-D(2) [1:5] is cust_order$20.code_d02;

 CODE-C(3) is cust_order$20.code_c03;

 CODE-D(3) [1:5] is cust_order$20.code_d03;

 CODE-C(4) is cust_order$20.code_c04;

 CODE-D(4) [1:5] is cust_order$20.code_d04;

 CODE-C(5) is cust_order$20.code_c05;

 CODE-D(5) [1:5] is cust_order$20.code_d05;

}

RECORD CUST-ORDER$22 {

 AREA ORDER-AREA2;

 CALC IS k0_calc_sr0620_22;

 DBKEY IS cust_order$22.row_cust_order

 VIA SEQUENCE dbk_cust_order$22;

 FO-NO-620 is cust_order$22.fo_no_620;

 CUST-PO-NO-620 is cust_order$22.cust_po_no_620;

 FILLER01 is cust_order$22.filler01;

 DATE-SHIP-620 is cust_order$22.date_ship_620;

 DATE-REQ-620 is cust_order$22.date_req_620;

 DATE-PROM-620 is cust_order$22.date_prom_620;

 ENTRY-CODE(1) is cust_order$22.entry_code01;

 BIN-NUM(1) is cust_order$22.bin_num01;

 PAC-NUM(1) is cust_order$22.pac_num01;

 ENTRY-CODE(2) is cust_order$22.entry_code02;

 BIN-NUM(2) is cust_order$22.bin_num02;

 PAC-NUM(2) is cust_order$22.pac_num02;

 ENTRY-CODE(3) is cust_order$22.entry_code03;

 BIN-NUM(3) is cust_order$22.bin_num03;

 PAC-NUM(3) is cust_order$22.pac_num03;

 ENTRY-CODE(4) is cust_order$22.entry_code04;

 BIN-NUM(4) is cust_order$22.bin_num04;

 PAC-NUM(4) is cust_order$22.pac_num04;

 ENTRY-CODE(5) is cust_order$22.entry_code05;

 BIN-NUM(5) is cust_order$22.bin_num05;

 PAC-NUM(5) is cust_order$22.pac_num05;

 BIN-NUM2(1) is cust_order$22.bin_num201;

 BIN-NUM2(2) is cust_order$22.bin_num202;

 BIN-NUM2(3) is cust_order$22.bin_num203;

 BIN-NUM2(4) is cust_order$22.bin_num204;

 BIN-NUM2(5) is cust_order$22.bin_num205;

 TEST-TBL3(1) is cust_order$22.test_tbl301;

 TEST-TBL3(2) is cust_order$22.test_tbl302;

 TEST-TBL3(3) is cust_order$22.test_tbl303;

 TEST-TBL3(4) is cust_order$22.test_tbl304;

 TEST-TBL3(5) is cust_order$22.test_tbl305;

 SMALL-BIN1 is cust_order$22.small_bin1;

 SMALL-BIN2 is cust_order$22.small_bin2;

 SMALL-BIN3 is cust_order$22.small_bin3;

 CODE-C(1) is cust_order$22.code_c01;

 CODE-D(1) [1:5] is cust_order$22.code_d01;

 CODE-C(2) is cust_order$22.code_c02;

 CODE-D(2) [1:5] is cust_order$22.code_d02;

 CODE-C(3) is cust_order$22.code_c03;

 CODE-D(3) [1:5] is cust_order$22.code_d03;

 CODE-C(4) is cust_order$22.code_c04;

 CODE-D(4) [1:5] is cust_order$22.code_d04;

 CODE-C(5) is cust_order$22.code_c05;

 CODE-D(5) [1:5] is cust_order$22.code_d05;

}

RECORD CUSTOMER {

 AREA CUSTOMER-AREA;

 CALC IS k0_customer;

 INDEX 1 IS k1_customer;

 DBKEY IS customer.row_customer

 VIA SEQUENCE dbk_customer;

 CUST-NO-611 is customer.cust_no_611;

 CUST-NAME-S-611 is customer.cust_name_s_611;

 CUST-ADDR-S-611 is customer.cust_addr_s_611;

 CUST-CREDIT is customer.cust_credit;

 CUST-BIG-611 is customer.cust_big_611;

TIP DataBase Interface Reference

92 TIP/dbi II IP-634

 TEXT-611 is customer.text_611;

}

RECORD ORD-REMARK {

 AREA ORDER-AREA;

 DBKEY IS ord_remark.row_ord_remark

 VIA SEQUENCE dbk_ord_remark;

 REMARK-CD-622 is ord_remark.cd;

 REMARK-SEQ-622 is ord_remark.seq;

 REMARK-622 is ord_remark.remark;

}

RECORD ORDER-ITEM$20 {

 AREA ORDER-AREA;

 DBKEY IS order_item$20.row_order_item

 VIA SEQUENCE dbk_order_item$20;

 PROD-NO-621 is order_item$20.prod_no_621;

 FILLER01 is order_item$20.filler01;

 LOT-NO-621 is order_item$20.lot_no_621;

 FILLER02 is order_item$20.filler02;

 QTY-ORD-621 is order_item$20.qty_ord_621;

 QTY-SHIP-621 is order_item$20.qty_ship_621;

 QTY-BIG-621 is order_item$20.qty_big_621;

 QTY-SEP-621 is order_item$20.qty_sep_621;

 QTY-TRL-621 is order_item$20.qty_trl_621;

}

RECORD ORDER-ITEM$22 {

 AREA ORDER-AREA2;

 DBKEY IS order_item$22.row_order_item

 VIA SEQUENCE dbk_order_item$22;

 PROD-NO-621 is order_item$22.prod_no_621;

 FILLER01 is order_item$22.filler01;

 LOT-NO-621 is order_item$22.lot_no_621;

 FILLER02 is order_item$22.filler02;

 QTY-ORD-621 is order_item$22.qty_ord_621;

 QTY-SHIP-621 is order_item$22.qty_ship_621;

 QTY-BIG-621 is order_item$22.qty_big_621;

 QTY-SEP-621 is order_item$22.qty_sep_621;

 QTY-TRL-621 is order_item$22.qty_trl_621;

}

RECORD PART-DETAIL {

 AREA PAYMENTS-AREA;

 CALC IS k0_part_detail;

 DBKEY IS part_detail.row_part_detail

 VIA SEQUENCE dbk_part_detail;

 PD-CUST-NO-805 is part_detail.cust_no_805;

 PD-CUST-PO-NO-805 is part_detail.cust_po_no_805;

 PD-PART-TYPE is part_detail.part_type;

 IF PD-PART-TYPE == "A" THEN {

 PD-PART-AMT-805 is part_detail.part_amt_805;

 } ELSe {

 PD-PART-TEMP is part_detail.part_temp;

 };

}

RECORD PART-NOTES {

 AREA PAYMENTS-AREA;

 DBKEY IS part_notes.row_part_notes

 VIA SEQUENCE dbk_part_notes;

 PN-SORT-810 is part_notes.pn_sort_810;

 PN-COMMENT-810 is part_notes.pn_comment_810;

}

RECORD PART-NUTES {

 AREA PAYMENTS-AREA;

 DBKEY IS part_nutes.row_part_nutes

 VIA SEQUENCE dbk_part_nutes;

 PN-SORT-815 is part_nutes.pn_sort_815;

 PN-COMMENT-815 is part_nutes.pn_comment_815;

 Sample DMS schema

 TIP/dbi II 93

}

RECORD PART-NUTEZ {

 AREA PAYMENTS-AREA;

 DBKEY IS part_nutez.row_part_nutez

 VIA SEQUENCE dbk_part_nutez;

 PN-SORT-817 is part_nutez.pn_sort_817;

 PN-COMMENT-817 is part_nutez.pn_comment_817;

}

RECORD PAYMENT-BATCH {

 AREA PAYMENTS-AREA;

 DBKEY IS payment_batch.row_payment_batch

 VIA SEQUENCE dbk_payment_batch;

 PB-BATCH-NUM-700 is payment_batch.batch_num;

 PB-CLERK-NUM-700 is payment_batch.clerk_num;

 PB-BATCH-TOTAL-700 is payment_batch.batch_total;

}

RECORD PAYMENT-DETAIL {

 AREA PAYMENTS-AREA;

 CALC IS k0_payment_detail;

 DBKEY IS payment_detail.row_payment_detail

 VIA SEQUENCE dbk_payment_detail;

 PD-CUST-NO-705 is payment_detail.cust_no;

 PD-CUST-PO-NO-705 is payment_detail.cust_po_no;

 PD-PAYMENT-AMT-705 is payment_detail.payment_amt;

}

RECORD PAYMENT-NOTES {

 AREA PAYMENTS-AREA;

 DBKEY IS payment_notes.row_payment_notes

 VIA SEQUENCE dbk_payment_notes;

 PN-COMMENT-710 is payment_notes.pn_comment_710;

}

RECORD PAYMENT-NUTES {

 AREA PAYMENTS-AREA;

 DBKEY IS payment_nutes.row_payment_nutes

 VIA SEQUENCE dbk_payment_nutes;

 PN-COMMENT-715 is payment_nutes.pn_comment_715;

}

RECORD PRODUCT$30 {

 AREA PRODUCT-AREA;

 CALC IS k0_calc_sr0631_30;

 INDEX 1 IS k0_calc_sr0631_30;

 DBKEY IS product$30.row_product

 VIA SEQUENCE dbk_product$30;

 PROD-NO-631 is product$30.prod_no_631;

 FILLER01 is product$30.filler01;

 PROD-DES-INT-631 is product$30.prod_des_int_631;

 PROD-DES-EXT-631 is product$30.prod_des_ext_631;

}

RECORD PRODUCT$32 {

 AREA PRODUCT-AREA2;

 CALC IS k0_calc_sr0631_32;

 INDEX 1 IS k0_calc_sr0631_32;

 DBKEY IS product$32.row_product

 VIA SEQUENCE dbk_product$32;

 PROD-NO-631 is product$32.prod_no_631;

 FILLER01 is product$32.filler01;

 PROD-DES-INT-631 is product$32.prod_des_int_631;

 PROD-DES-EXT-631 is product$32.prod_des_ext_631;

}

RECORD VENDOR$30 {

 AREA PRODUCT-AREA;

 INDEX 1 IS k1_index_01_0651_30;

 DBKEY IS vendor$30.row_vendor

TIP DataBase Interface Reference

94 TIP/dbi II IP-634

 VIA SEQUENCE dbk_vendor$30;

 VENDOR-NAME-651 is vendor$30.name_651;

 VENDOR-ID is vendor$30.id;

 VENDOR-ADDR is vendor$30.addr;

}

RECORD VENDOR$32 {

 AREA PRODUCT-AREA2;

 INDEX 1 IS k1_index_01_0651_32;

 DBKEY IS vendor$32.row_vendor

 VIA SEQUENCE dbk_vendor$32;

 VENDOR-NAME-651 is vendor$32.name_651;

 VENDOR-ID is vendor$32.id;

 VENDOR-ADDR is vendor$32.addr;

}

SET ORDOR AUTOMATIC SORTED 2 members

SET ORDOR {

 REFERENCE ordor.own_ordor IS customer.row_customer;

 ORDER BY

 ordor.own_ordor,

 ordor.pos_ordor,

 ordor.member_id;

 WHEN ordor.member_id IS 200620

 MEMBER CUST-ORDER$20 {

 ordor.pos_ordor IS cust_order$20.fo_no_620

 ordor.member_row IS cust_order$20.row_cust_order;

 ordor.own_ordor IS cust_order$20.own_ordor;

 }

 WHEN ordor.member_id IS 220620

 MEMBER CUST-ORDER$22 {

 ordor.pos_ordor IS cust_order$22.fo_no_620

 ordor.member_row IS cust_order$22.row_cust_order;

 ordor.own_ordor IS cust_order$22.own_ordor;

 }

}

SET ITEM AUTOMATIC ORDER NEXT 2 members

SET ITEM {

 POSITION IS item.pos_item

 VIA SEQUENCE posxitem;

 WHEN item.aid_item IS 200620

 OWNER CUST-ORDER OF AREA ORDER-AREA

 REFERENCE TO cust_order$20.row_cust_order;

 WHEN item.aid_item IS 220620

 OWNER CUST-ORDER OF AREA ORDER-AREA2

 REFERENCE TO cust_order$22.row_cust_order;

 ORDER BY

 item.aid_item,

 item.own_item,

 item.pos_item;

 WHEN item.member_id IS 200621

 MEMBER ORDER-ITEM$20

 POSITION IS order_item$20.pos_item

 REFERENCE FROM order_item$20.own_item {

 item.member_row IS order_item$20.row_order_item;

 item.aid_item IS order_item$20.aid_item;

 item.own_item IS order_item$20.own_item;

 }

 WHEN item.member_id IS 220621

 MEMBER ORDER-ITEM$22

 POSITION IS order_item$22.pos_item

 REFERENCE FROM order_item$22.own_item {

 item.member_row IS order_item$22.row_order_item;

 item.aid_item IS order_item$22.aid_item;

 Sample DMS schema

 TIP/dbi II 95

 item.own_item IS order_item$22.own_item;

 }

}

SET QTY AUTOMATIC SORTED 2 members

SET QTY {

 WHEN qty.aid_qty IS 200620

 OWNER CUST-ORDER OF AREA ORDER-AREA

 REFERENCE TO cust_order$20.row_cust_order;

 WHEN qty.aid_qty IS 220620

 OWNER CUST-ORDER OF AREA ORDER-AREA2

 REFERENCE TO cust_order$22.row_cust_order;

 ORDER BY

 qty.aid_qty,

 qty.own_qty,

 qty.pos_qty,

 qty.pos_qty1,

 qty.member_id,

 qty.member_row;

 WHEN qty.member_id IS 200621

 MEMBER ORDER-ITEM$20

 REFERENCE FROM order_item$20.own_qty {

 qty.pos_qty IS order_item$20.qty_ord_621

 qty.pos_qty1 IS order_item$20.qty_ship_621

 qty.member_row IS order_item$20.row_order_item;

 qty.aid_qty IS order_item$20.aid_qty;

 qty.own_qty IS order_item$20.own_qty;

 }

 WHEN qty.member_id IS 220621

 MEMBER ORDER-ITEM$22

 REFERENCE FROM order_item$22.own_qty {

 qty.pos_qty IS order_item$22.qty_ord_621

 qty.pos_qty1 IS order_item$22.qty_ship_621

 qty.member_row IS order_item$22.row_order_item;

 qty.aid_qty IS order_item$22.aid_qty;

 qty.own_qty IS order_item$22.own_qty;

 }

}

SET QTY-SHIP AUTOMATIC SORTED 2 members

SET QTY-SHIP {

 WHEN qty_ship.aid_qty_ship IS 200620

 OWNER CUST-ORDER OF AREA ORDER-AREA

 REFERENCE TO cust_order$20.row_cust_order;

 WHEN qty_ship.aid_qty_ship IS 220620

 OWNER CUST-ORDER OF AREA ORDER-AREA2

 REFERENCE TO cust_order$22.row_cust_order;

 ORDER BY

 qty_ship.aid_qty_ship,

 qty_ship.own_qty_ship,

 qty_ship.pos_qty_ship,

 qty_ship.member_id,

 qty_ship.member_row;

 WHEN qty_ship.member_id IS 200621

 MEMBER ORDER-ITEM$20

 REFERENCE FROM order_item$20.own_qty_ship {

 qty_ship.pos_qty_ship IS order_item$20.qty_ship_621

 qty_ship.member_row IS order_item$20.row_order_item;

 qty_ship.aid_qty_ship IS order_item$20.aid_qty_ship;

 qty_ship.own_qty_ship IS order_item$20.own_qty_ship;

 }

 WHEN qty_ship.member_id IS 220621

 MEMBER ORDER-ITEM$22

TIP DataBase Interface Reference

96 TIP/dbi II IP-634

 REFERENCE FROM order_item$22.own_qty_ship {

 qty_ship.pos_qty_ship IS order_item$22.qty_ship_621

 qty_ship.member_row IS order_item$22.row_order_item;

 qty_ship.aid_qty_ship IS order_item$22.aid_qty_ship;

 qty_ship.own_qty_ship IS order_item$22.own_qty_ship;

 }

}

SET SPEC-REMARK MANUAL ORDER LAST

SET SPEC-REMARK {

 POSITION IS ord_remark.pos_spec_remark

 VIA SEQUENCE posxspec_remark;

 WHEN ord_remark.aid_spec_remark IS 200620

 OWNER CUST-ORDER OF AREA ORDER-AREA

 REFERENCE ord_remark.own_spec_remark IS cust_order$20.row_cust_order;

 WHEN ord_remark.aid_spec_remark IS 220620

 OWNER CUST-ORDER OF AREA ORDER-AREA2

 REFERENCE ord_remark.own_spec_remark IS cust_order$22.row_cust_order;

 ORDER BY

 ord_remark.aid_spec_remark,

 ord_remark.own_spec_remark,

 ord_remark.pos_spec_remark;

}

SET PROD-ORD AUTOMATIC SORTED 2 members

SET PROD-ORD {

 WHEN prod_ord.aid_prod_ord IS 300631

 OWNER PRODUCT OF AREA PRODUCT-AREA

 REFERENCE TO product$30.row_product;

 WHEN prod_ord.aid_prod_ord IS 320631

 OWNER PRODUCT OF AREA PRODUCT-AREA2

 REFERENCE TO product$32.row_product;

 ORDER BY

 prod_ord.aid_prod_ord,

 prod_ord.own_prod_ord,

 prod_ord.pos_prod_ord,

 prod_ord.member_id;

 WHEN prod_ord.member_id IS 200621

 MEMBER ORDER-ITEM$20

 REFERENCE FROM order_item$20.own_prod_ord {

 prod_ord.pos_prod_ord IS order_item$20.lot_no_621

 prod_ord.member_row IS order_item$20.row_order_item;

 prod_ord.aid_prod_ord IS order_item$20.aid_prod_ord;

 prod_ord.own_prod_ord IS order_item$20.own_prod_ord;

 }

 WHEN prod_ord.member_id IS 220621

 MEMBER ORDER-ITEM$22

 REFERENCE FROM order_item$22.own_prod_ord {

 prod_ord.pos_prod_ord IS order_item$22.lot_no_621

 prod_ord.member_row IS order_item$22.row_order_item;

 prod_ord.aid_prod_ord IS order_item$22.aid_prod_ord;

 prod_ord.own_prod_ord IS order_item$22.own_prod_ord;

 }

}

SET VEND-PROD AUTOMATIC SORTED 2 members

SET VEND-PROD {

 WHEN vend_prod.aid_vend_prod IS 300651

 OWNER VENDOR OF AREA PRODUCT-AREA

 REFERENCE TO vendor$30.row_vendor;

 WHEN vend_prod.aid_vend_prod IS 320651

 OWNER VENDOR OF AREA PRODUCT-AREA2

 REFERENCE TO vendor$32.row_vendor;

 Sample DMS schema

 TIP/dbi II 97

 ORDER BY

 vend_prod.aid_vend_prod,

 vend_prod.own_vend_prod,

 vend_prod.pos_vend_prod,

 vend_prod.member_id;

 WHEN vend_prod.member_id IS 300631

 MEMBER PRODUCT$30

 REFERENCE FROM product$30.own_vend_prod {

 vend_prod.pos_vend_prod IS product$30.prod_no_631

 vend_prod.member_row IS product$30.row_product;

 vend_prod.aid_vend_prod IS product$30.aid_vend_prod;

 vend_prod.own_vend_prod IS product$30.own_vend_prod;

 }

 WHEN vend_prod.member_id IS 320631

 MEMBER PRODUCT$32

 REFERENCE FROM product$32.own_vend_prod {

 vend_prod.pos_vend_prod IS product$32.prod_no_631

 vend_prod.member_row IS product$32.row_product;

 vend_prod.aid_vend_prod IS product$32.aid_vend_prod;

 vend_prod.own_vend_prod IS product$32.own_vend_prod;

 }

}

SET BATCH-DETAIL AUTOMATIC ORDER PRIOR

SET BATCH-DETAIL {

 POSITION IS payment_detail.pos_batch_detail

 VIA SEQUENCE posxbatch_detail;

 REFERENCE payment_detail.own_batch_detail IS payment_batch.row_payment_batch;

 ORDER BY

 payment_detail.own_batch_detail,

 payment_detail.pos_batch_detail;

}

SET DETAIL-NOTES MANUAL ORDER PRIOR 2 members

SET DETAIL-NOTES {

 POSITION IS detail_notes.pos_detail_notes

 VIA SEQUENCE posxdetail_notes;

 REFERENCE detail_notes.own_detail_notes IS payment_detail.row_payment_detail;

 ORDER BY

 detail_notes.own_detail_notes,

 detail_notes.pos_detail_notes;

 WHEN detail_notes.member_id IS 700710

 MEMBER PAYMENT-NOTES

 POSITION IS payment_notes.pos_detail_notes {

 detail_notes.member_row IS payment_notes.row_payment_notes;

 detail_notes.own_detail_notes IS payment_notes.own_detail_notes;

 }

 WHEN detail_notes.member_id IS 700715

 MEMBER PAYMENT-NUTES

 POSITION IS payment_nutes.pos_detail_notes {

 detail_notes.member_row IS payment_nutes.row_payment_nutes;

 detail_notes.own_detail_notes IS payment_nutes.own_detail_notes;

 }

}

SET PAYMENT-NOTES MANUAL ORDER PRIOR 2 members

SET PAYMENT-NOTES {

 POSITION IS S_payment_notes.pos_payment_notes

 VIA SEQUENCE posxpayment_notes;

 REFERENCE S_payment_notes.own_payment_notes IS payment_detail.row_payment_detail;

 ORDER BY

 S_payment_notes.own_payment_notes,

 S_payment_notes.pos_payment_notes;

 WHEN S_payment_notes.member_id IS 700710

 MEMBER PAYMENT-NOTES

 POSITION IS payment_notes.pos_payment_notes {

TIP DataBase Interface Reference

98 TIP/dbi II IP-634

 S_payment_notes.member_row IS payment_notes.row_payment_notes;

 S_payment_notes.own_payment_notes IS payment_notes.own_payment_notes;

 }

 WHEN S_payment_notes.member_id IS 700715

 MEMBER PAYMENT-NUTES

 POSITION IS payment_nutes.pos_payment_notes {

 S_payment_notes.member_row IS payment_nutes.row_payment_nutes;

 S_payment_notes.own_payment_notes IS payment_nutes.own_payment_notes;

 }

}

SET PARTS-NOTES MANUAL SORTED 3 members

SET PARTS-NOTES {

 REFERENCE parts_notes.own_parts_notes IS part_detail.row_part_detail;

 ORDER BY

 parts_notes.own_parts_notes,

 parts_notes.pos_parts_notes,

 parts_notes.member_id;

 WHEN parts_notes.member_id IS 700810

 MEMBER PART-NOTES {

 parts_notes.pos_parts_notes IS part_notes.pn_sort_810

 parts_notes.member_row IS part_notes.row_part_notes;

 parts_notes.own_parts_notes IS part_notes.own_parts_notes;

 }

 WHEN parts_notes.member_id IS 700815

 MEMBER PART-NUTES {

 parts_notes.pos_parts_notes IS part_nutes.pn_sort_815

 parts_notes.member_row IS part_nutes.row_part_nutes;

 parts_notes.own_parts_notes IS part_nutes.own_parts_notes;

 }

 WHEN parts_notes.member_id IS 700817

 MEMBER PART-NUTEZ {

 parts_notes.pos_parts_notes IS part_nutez.pn_sort_817

 parts_notes.member_row IS part_nutez.row_part_nutez;

 parts_notes.own_parts_notes IS part_nutez.own_parts_notes;

 }

}

 Upgrading from old TIP/dbi

 TIP/dbi II 99

Upgrading from old TIP/dbi

This newer version of TIP/dbi has been in development since 2001 and it has
several advantages over the first version of TIP/dbi.

 TIP/dbi II runs much faster than the older version due to better database
search optimization and internal caching of SELECT statements.

 TIP/dbi II uses the Oracle Call Interface which performs faster than the the
embedded SQL used by the older TIP/dbi.

 TIP/dbi II supports Oracle 8 up thru Oracle 10g.

 TIP/dbi II supports data mapping. This gives you significantly more control
over how your COBOL records are mapped to relational tables.

 TIP/dbi II supports conditional REDEFINES. This allows each of the
redefined data fields to be mapped to separate columns, making the data
visible to tools outside of TIP/dbi. The old TIP/dbi would have overlapped
the data items and/or encoded the data as RAW (hexadecimal) which
makes the data unusable outside of TIP/dbi.

If you want better performance or you want to be able to better use your data
with software tools outside of TIP/dbi, then you should upgrade to TIP/dbi II.

The old TIP/dbi creates a series of files and data dictionary in a directory
called $TIPDMS/schema.dd while TIP/dbi II uses a directory called

$TIPDMS/schema.dd3 .

Unload/Reload

If you have been using RAW or FOLDing the data with your current version of
TIP/dbi then you would want to unload your current database to sequential
files and then reload the data into a new database structure using TIP/dbi II.

The dbiunload utility discussed in previous section can be used to generate

some COBOL/DMS programs that can be compiled on Unix using the older
TIP/dbi system and then executed to unload the data into a series of
sequential files. This same method is used to unload data from the mainframe
DMS database. Once the data has been unloaded, then you can reload this

data into your new Tip/dbi II managed database using the dbireload utility.

Be sure to recompile all of you application using the TIP/dbi II utilities

(dbipre).

TIP DataBase Interface Reference

100 TIP/dbi II IP-634

Keep existing database

If you have not been using RAW or FOLD and you have no needs to change
the structure of the relational database then you could have TIP/dbi II use the
exact same tables and data as the old TIP/dbi.

Each DMS record needs to have a unique database key. The older Tip/dbi
generated unique numbers using values from a special table called

schema_next_unq which TIP/dbi would read and write each time it needs

another database key. TIP/dbi II uses an Oracle SEQUENCE to generate
unique database keys. The SEQUENCE is much faster than updating a
separate Oracle table. But to use your existing database tables, the correct
values must be transferred to the corresponding SEQUENCE.

To keep your existing table structure run dbischema with the –o option or

add the clause KEEP DEFAULT to the schema header section before you run

dbischema.

DBIUPGRADE

The utility dbiupgrade can be used to cross-check that your existing table

structure matches what TIP/dbi II expects. It does this by reading the old

schema.ddl from $TIPDMS/schema.dd and comparing that to the new

structure defined in $TIPDMS/schema.dd3/schema.ddl.

The dbiupgrade usage is:

TIP/dbi II Convert from old TIP/dbi; Version c,v 1.3 2005/12

 © 1991-2005 Inglenet Business Solutions

 dbiupgrade -s schema -d oldschema.ddl

 Where the options are:

 -s schema name as compiled by dbischema (TIP/dbi II)

 -d SQL DDL file generated by old TIP/dbi

 Default: located in parellel directory

When run the utility reads the values from schema_next_unq and writes out

a file $TIPDMS/schema.dd3/schema.upgrade which can be processed by

sqlplus to create the required SEQUENCE with the correct values. For

example:

DROP SEQUENCE dbk_budget;

CREATE SEQUENCE dbk_budget START WITH 1 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_cust_order;

CREATE SEQUENCE dbk_cust_order START WITH 281 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_customer;

CREATE SEQUENCE dbk_customer START WITH 1041 INCREMENT BY 1 CACHE 5;

DROP SEQUENCE dbk_ind_m;

CREATE SEQUENCE dbk_ind_m START WITH 1 INCREMENT BY 1 CACHE 5;

You must stop using the old TIP/dbi, then run dbiupgrade, then use

sqlplus to create the SEQUENCE, then recompile your applications with

TIP/dbi II and then you can start using TIP/dbi II.

 TIP/dbi database maintenance

 TIP/dbi II 101

TIP/dbi database maintenance

Updating the Schema definition

The supplied program dbidiff.pc provides functionality that will allow you

to make modifications to DMS database schema record definitions by adding
new fields to the end of the record, which are not part of any SET relationship.
This also requires using the option REMOVE FILLER, which is the default.

dbidiff can then be used to compute alterations that need to be done to an

existing Oracle database structure for it to match the new DMS schema
without requiring the existing database to be unloaded and reloaded. This is a
significant operational advantage and will work for the majority of changes that
you might want to make to the DMS database structure. However some major
changes such as splitting a record in two and establishing a SET relationship
between the new records might require a manual database unload and reload
using special written COBOL/DMS programs.

There is a utility called dbidiff.pc which will be supplied in source code

format. This program must be pre-processed with Oracle proc and compiled.

Once compiled it can be used to compute the difference between schema.ddl

and what is actually defined in the Oracle data dictionary. dbidiff takes the

following command line options:

Option Description

-U userid Oracle User Id to connect to Oracle with

-P pass Oracle password to connect to Oracle with

Following the options is the Oracle schema.ddl file name to be processed.
The schema.ddl file is parsed and a schema.alter file is produced which can
be used to update the Oracle table definitions to match schema.ddl.

dbidiff -U user -P passwd prodschm.ddl

To make the changes inside the Oracle database you would need to run:

sqlplus user/passwd <prodschm.alter

Where user is the Oracle user-id for the Oracle schema holding the database

and passwd is the corresponding Oracle password for that user.

TIP DataBase Interface Reference

102 TIP/dbi II IP-634

Example Schema Change Procedures

This example show using some scripts editmod/postmod for managing your
code via CVS/RCS. If you are not using source control management or yoru
are not using these scripts or something like them, just ignore these steps in
the following examples.

By and large the procedures for making changes to the schema or sub-
schema follow similar steps to the methodology employed in the DMS-2200
environment, but obviously there will be several operational differences.

If the change to the schema involves a key field or is part of a set relationship
or index, then usually an unload/reload sequence would be required as part of
the change.

In the TIP/dbi environment, “skeleton” unload/reload programs are built with
the dbiunload utility.

However, if the change entails something no more complex than the addition
of a field to the end of a record or a simple change to the size of the field, then
the unload/reload steps should not be required in the TIP/dbi environment.

It would not likely be possible to cover each and every possible change
scenario that may be required, but we will attempt to outline the steps required
to make the most common types of changes that may be encountered.

To add a new data field to the end of a record, the following steps would
be followed:

All changes should be completed in a “test” environment with a backup of the
affected database tables taken first, and obviously with TIP/ix down (or at
least the application in question disabled) and no other processing of any kind
occurring against the subject database during the entire time that changes are
being made.

 tipctl s (or use the site script to disable the application in question)

 cd $TIPSITE/schema

 editmod schema-name

 using “vi” or the editor of choice, make the required change to the schema

 dbischema schema-name

 dbisubschema sub-schema-name (for each sub-schema as required)

 cd $TIPDMS/schemaname.dd3

 dbidiff –U user –P passwd schemaname.ddl

 sqlplus user/passwd <schemaname.alter

 cd $TIPSITE/schema

 postmod schema-name

 make and test needed application code changes

This will create a new schemaname.ddl and dictionary.exp file in the

$TIPDMS/schemaname.dd3 directory.

 Example Schema Change Procedures

 TIP/dbi II 103

If you have a separate production system and after all of you changes have
been tested you will want to move them to production. You will need to copy
over the contents of the schemaname.dd3 directory, run the
schemaname.alter SQL script on the production system and copy over all of
the changed application programs as well.

From that new “ddl” file, you could use an editor to extract the new field
definition and convert it into an Oracle “alter table” command such as:

alter table recordname add column fieldname

The TIP/dbi utility called dbidff may also be used after the schema has been
processed by dbischema in order for it to display the differences, and even

generate the “alter” commands. (where userid is the Oracle userid for the

schema and password is the Oracle password.)

cd $TIPDMS/schemaname.dd3

dbidiff –U userid –P password schemaname.ddl

You must use sqlplus to run the commands to actually make the change to

the Oracle database but it is a good idea to review what dbidiff created to

verify that it all looks correct.

(The example below shows “manual” starting of sqlplus, where userid is

the Oracle userid for the schema and password is the Oracle password.)

cd $TIPDMS/schemaname.dd3

sqlplus userid/password < schemaname.alter

For example, let us add a new field to the EMISSIONS record:

 RECORD NAME IS EMISSIONS

 RECORD CODE IS 157

 LOCATION MODE IS DIRECT EMISSIONS-KEY STATION-AREA

 WITHIN MVIP-STATION

 RECORD MODE IS ASCII

 03 ST-EMI-FILLER PIC X(4)

JDSJDS 03 JDS-NEW-FIELD PIC X(5)

</home/davids/vsp/schema> dbischema mvip-schema.sch

TIP/dbi II Schema Compiler; Version 1.123 2014/08/17

 © 1991-2014 Inglenet Business Solutions

 Oracle9 version: 9.2.0.1.0

SUN Default: NO SEQUENTIAL FIELDS BY RECORD

Reading `mvip-schema.sch'

Removing old /export/spare/home2/projects/vsp/dbidd/mvip-schema.dd3/mvip-

schema.sym

Default TABLESPACE is: MVIP_DATA_TS1

Default INDEXSPACE is: MVIP_INDEX_TS1

TIP DataBase Interface Reference

104 TIP/dbi II IP-634

Reading Data Base Data Names at line 11

Reading AREAs starting at line: 42

If the last field of a record is FILLER, then it is not part of the SQL

schema

Reading RECORDs starting at line: 246

INCLUDE ST-LOCATION

Reading SETs starting at line: 1144

Finished parsing 1321 lines

Generating with Oracle 9 limits: Max CHAR 1995, Max Columns 995

TRIM FIELD NAMES; Keeping '-'

 LOW-VALUES ARE NULL

Note: Treating XREF-CT-STKR-TBL size 15 as one column

Note: Treating IS-TRN-INSRT-TBL size 8 as one column

Note: Treating IS-TRN-STKR-ISS-TBL size 18 as one column

Note: Treating XREF-MC-STKR-TBL size 15 as one column

Note: Treating CN-SRJ-EXP-TBL size 11 as one column

Note: Treating XREF-SR-STKR-TBL size 14 as one column

Note: Treating ST-GEN-ISSUE size 6 as one column

Note: Treating XREF-TM-STKR-TBL size 16 as one column

Note: Treating TRAN-KEY-CD size 6 as one column

Note: Treating ST-INV-QTR-TBL-MC size 17 as one column

Create Database script already exists

Create Tablespace script already exists

Create User script already exists

Writing SQL Schema definition: `/home2/projects/vsp/dbidd/mvip-

schema.dd3/mvip-schema.ddl'

Most columns in any table was 302

Most indexes on any table was 3

53 records defined

Total 1321 lines in DMS2200 schema

TIP/dbi Data Mapping Compiler; Version 1.173 2014/09/26

 © 1991-2014 Inglenet Business Solutions

 DBI Generator schema: mvip-schema

 Schema dictionary: /home2/projects/vsp/dbidd/mvip-schema.dd3/mvip-schema.sym

 SQL DDL definition: /home2/projects/vsp/dbidd/mvip-schema.dd3/mvip-schema.ddl

 Data mapping rules: /home2/projects/vsp/dbidd/mvip-schema.dd3/mvip-schema.map

 Generating output to: /home2/projects/vsp/dbidd/mvip-schema.dd3

08:13:45.07 >>> Parsing SQL DDL <<<

08:13:45.11 >>> Opened DMS schema dictionary and parsed SQL DDL <<<

08:13:45.35 Finished parsing data mapping rules, now generating TIP/dbi run-

time

08:13:45.35 >>> Maximum sequence value is 4,294,967,295 <<<

08:13:45.52 >>> Now writing dictionary <<<

08:13:45.64 TIP/dbi generation completed

</home/davids/vsp/schema> cd $TIPDMS/mvip-schema.dd3

</home/davids/vsp/ddidd/mvip-schema.dd3> view mvip-schema.ddl

--

-- Table 8, Rcsz= 9, SR157 : EMISSIONS : 3 SQL columns

-- Estimated Max Row Size 20

--

DROP TABLE emissions CASCADE CONSTRAINTS;

CREATE TABLE emissions (

 st_emi_filler CHAR(4),

 jds_new_field CHAR(5),

 row_emissions INTEGER NOT NULL,

 CONSTRAINT pk_emissions PRIMARY KEY(row_emissions)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE MVIP_INDEX_TS1

)

 STORAGE (FREELISTS 3)

 Example Schema Change Procedures

 TIP/dbi II 105

 TABLESPACE MVIP_DATA_TS1;

The dbidiff utility will compare the newly created “schemaname.ddl” structure
to the existing database layout in Oracle showing the differences and
producing an SQL script to make the changes to the database in Oracle.

</home/davids/vsp/ddidd/mvip-schema.dd3> dbidiff

TIP/ix DMS to Oracle Schema difference generator (Ver: 1.10 2010/09/09)

 © 1991-2010 Inglenet Business Solutions

Oracle User/Password must be supplied with -U

 Compute the difference between a generated DDL and

 the currently active DDL in Oracle

 This will work for changing current data fields or

 the addition of non-key fields

Command usage:

dbidiff [options] schema.ddl

Where:

 -v 'verbose', List table sizes

 -U user to be used to Connect to Oracle

 -P password to be used to Connect to Oracle

Environment variables:

 ORACLE_UID Oracle DBA user id

 ORACLE_PWD Oracle DBA password

</home/davids/vsp/ddidd/mvip-schema.dd3> dbidiff -U * -P * mvip-schema.ddl

TIP/ix DMS to Oracle Schema difference generator (Ver: 1.10 2010/09/09)

 © 1991-2010 Inglenet Business Solutions

Alter Schema written out to mvip-schema.alter

</home/davids/vsp/ddidd/mvip-schema.dd3> cat mvip-schema.alter

spool alter

ALTER TABLE emissions

 ADD (jds_new_field CHAR(5))

;

spool OFF

exit;

</home/davids/vsp/ddidd/mvip-schema.dd3> sqlplus User/Password <*mvip-

schema.alter

SQL*Plus: Release 8.1.5.0.0 - Production on Thu Feb 19 16:13:20 2004

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 - Production

SQL> SQL> 2 3

Table altered.

TIP DataBase Interface Reference

106 TIP/dbi II IP-634

SQL> SQL> Disconnected from Oracle8i Enterprise Edition Release 8.1.5.0.0 -

Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 - Production

</home/davids/vsp/ddidd/mvip-schema.dd3> sqlplus User/Password

SQL> desc emissions ;

 Name Null? Type

 --- -------- -------------------------

 ST_EMI_FILLER CHAR(4)

 ROW_EMISSIONS NOT NULL NUMBER(38)

 JDS_NEW_FIELD CHAR(5)

At this point the database is ready, and could be “populated” as required using
Oracle commands or a COBOL program.

Re-compile all programs affected using the appropriate “make” script(s).

A second backup of the affected tables may be taken if desired before
enabling TIP/ix with the new field in place.

The TIP/ix system may be restarted so that the change can be tested. Instead
of having to shut all of TIP/ix down, you could also down just the schema you

are working on using the command tippcstm down myschema.

tipctl b (and/or use the site script to enable the application in question)

To change the size of data field within an existing record, the following
steps would be followed:

Essentially if the change being done is to simply modify the size of a data
field, then the steps included above for adding a new column would be
identical except that the “alter table” command would become:

Alter table recordname modify column fieldname …

For example, if the newly added field JDS-NEW-FIELD in the EMISSIONS
record should have been 6 characters instead of 5, then we would do
something like the following:

After checking out the schemaname.sch file from CVS using the editmod
schemaname.sch command, you would simply use the text editor of your
choice to make the change to the schema.

 RECORD NAME IS EMISSIONS

 RECORD CODE IS 157

 LOCATION MODE IS DIRECT EMISSIONS-KEY STATION-AREA

 WITHIN MVIP-STATION

 RECORD MODE IS ASCII

 03 ST-EMI-FILLER PIC X(4)

JDSJDS 03 JDS-NEW-FIELD PIC X(6)

 Example Schema Change Procedures

 TIP/dbi II 107

The schema must then be processed by the dbischema utility:

</home/davids/vsp/schema> dbischema mvip-schema.sch

TIP/dbi Schema Compiler; Version 1.37 2004/02/10

 ® 1991-2004 Inglenet Business Solutions

 Oracle8 version: 8.1.5.0.0

Reading `mvip-schema.sch'

Removing old /home/davids/vsp/ddidd/mvip-schema.dd3/mvip-schema.sym

Default TABLESPACE is: MVIP_DATA_TS1

Default INDEXSPACE is: MVIP_INDEX_TS1

Reading Data Base Data Names at line 11

Reading AREAs starting at line: 40

If the last field of a record is FILLER, then it is not part of the SQL

schema

Reading RECORDs starting at line: 228

INCLUDE ST-LOCATION

Reading SETs starting at line: 1038

Finished parsing 1207 lines, 0 seconds elapsed, 1207 lines per second

Generating with Oracle 8 limits: Max CHAR 1995, Max Columns 995

Create Database script already exists

Create Tablespace script already exists

Writing SQL Schema definition: `/home/davids/vsp/ddidd/mvip-schema.dd3/mvip-

schema.ddl'

Most columns in any table was 500

Most indexes on any table was 3

49 records defined

Total 1 seconds elapsed, 1207 lines per second DMS2200

TIP/dbi Data Mapping Generator; Version 1.47 2004/02/10

 ® 1991-2004 Inglenet Business Solutions

 DBI Generator schema: mvip-schema

 Schema dictionary: /home/davids/vsp/ddidd/mvip-schema.dd3/mvip-

schema.sym

 SQL DDL definition: /home/davids/vsp/ddidd/mvip-schema.dd3/mvip-

schema.ddl

 Data mapping rules: /home/davids/vsp/ddidd/mvip-schema.dd3/mvip-

schema.map

 Generating output to: /home/davids/vsp/ddidd/mvip-schema.dd3

 >>> Opened DMS schema dictionary and parsed SQL DDL <<<

Finished parsing data mapping rules, now generating TIP/dbi run-time

 >>> Maximum sequence value is 999,999,999 <<<

TIP/dbi generation completed

The updated Oracle version of the schema may be viewed and verified:

</home/davids/vsp/schema> cd $TIPDMS/mvip-schema.dd3

</home/davids/vsp/ddidd/mvip-schema.dd3> view mvip-schema.ddl

--

-- Table 8, Rcsz= 8, SR157 : EMISSIONS : 3 SQL columns

-- Estimated Max Row Size 20

--

DROP TABLE emissions CASCADE CONSTRAINTS;

CREATE TABLE emissions (

 st_emi_filler CHAR(4),

TIP DataBase Interface Reference

108 TIP/dbi II IP-634

 jds_new_field CHAR(6),

 row_emissions INTEGER NOT NULL,

 CONSTRAINT pk_emissions PRIMARY KEY(row_emissions)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE MVIP_INDEX_TS1

)

 STORAGE (FREELISTS 3)

 TABLESPACE MVIP_DATA_TS1;

The schema layout has been changed, and now the actual database must be
updated to reflect the altered size of the field that was changed.

The dbidiff utility is used to compare the schema layout to the Oracle
structure and show the differences and the changes that need to be made to
the database.

</home/davids/mvip-schema.dd3> dbidiff -U xxx -P yyy mvip-schema.ddl

TIP/ix DMS to Oracle Schema difference generator (Ver: 1.1 2004/02/04)

 ® 1991-2004 Inglenet Business Solutions

Alter Schema written out to mvip-schema.alter

A visual check of the changes that TIP/dbi will require to be made to the

database may be done prior to actually running the script.

</home/davids/vsp/ddidd/mvip-schema.dd3> cat mvip-schema.alter

spool alter

ALTER TABLE emissions

-- length 6 > hLength 5

 MODIFY (jds_new_field CHAR(6))

;

spool OFF

exit;

After verification that the changes are what is required, the database is then
updated to reflect the new schema structure within the Oracle tables:

</home/davids/mvip-schema.dd3> sqlplus user/pwd < mvip-schema.alter

SQL*Plus: Release 8.1.5.0.0 - Production on Thu Feb 19 16:39:32 2004

(c) Copyright 1999 Oracle Corporation. All rights reserved.

Connected to:

Oracle8i Enterprise Edition Release 8.1.5.0.0 - Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 - Production

SQL> SQL> 2 3 4

Table altered.

SQL> SQL> Disconnected from Oracle8i Enterprise Edition Release 8.1.5.0.0 -

Production

With the Partitioning and Java options

PL/SQL Release 8.1.5.0.0 - Production

SQL> desc emissions ;

 Example Schema Change Procedures

 TIP/dbi II 109

 Name Null? Type

 --- -------- -------------------------

 ST_EMI_FILLER CHAR(4)

 ROW_EMISSIONS NOT NULL NUMBER(38)

 JDS_NEW_FIELD CHAR(6)

To Add a New Record Type Into The Database

The process to insert a totally new record type into an existing schema would
follow similar steps to adding a new column or increasing the size of a column,
but with the exception being that a DMS COBOL “load” program must be
created in order to populate the database in a manner that TIP/dbi will
understand.

JDSJDS RECORD NAME IS ZMISSIONS

JDSJDS LOCATION MODE IS DIRECT EMISSIONS-KEY STATION-AREA

JDSJDS WITHIN MVIP-STATION

JDSJDS RECORD MODE IS ASCII

JDSJDS

JDSJDS 03 ST-EMI-FILLER-Z PIC X(4)

JDSJDS

--

-- Table 50, Rcsz= 4, SR9998 : ZMISSIONS : 2 SQL columns

-- Estimated Max Row Size 16

--

DROP TABLE zmissions CASCADE CONSTRAINTS;

CREATE TABLE zmissions (

 st_emi_filler_z CHAR(4),

 row_zmissions INTEGER NOT NULL,

 CONSTRAINT pk_zmissions PRIMARY KEY(row_zmissions)

 USING INDEX STORAGE (FREELISTS 3) TABLESPACE MVIP_INDEX_TS1

)

 STORAGE (FREELISTS 3)

 TABLESPACE MVIP_DATA_TS1;

To make changes to records which involve sets or indexes

To make a change to the database which involves changes or additions to sets or indexes, then the

database records involved should be unloaded using the old schema, and then reloaded using the

new schema.

If the site does not have their own unload/reload programs, then the dbiunload utility supplied

with TIP/dbi can be used to create “skeleton” COBOL programs to accomplish this task.

The programs generated by the dbiunload utility must be closely examined and must be tweaked

“manually” to ensure that the desired results are achieved during the unload/reload process.

 cd $TIPSITE/dba_programs

 dbiunload –S schemaname –U subschemaname –l areaname(s) or ALL

 make clean

 make

Here is an example where the MVIP-STATION area is going to be unloaded in
preparation for a change to that area -

TIP DataBase Interface Reference

110 TIP/dbi II IP-634

(SUNFIRE1:/home1/davids)1235 $ unload.sunfire1.mvip

Start MVIP Unload Programs at Wednesday February 18 15:40:01 EST 2004

Start mvipsul0 at Wednesday February 18 15:40:01 EST 2004

Start mvipsul at Wednesday February 18 15:40:01 EST 2004

PROCESS EMISSIONS

UNLOADED 000000000001 EMISSIONS RECORDS

PROCESS STATION-GENERIC

UNLOADED 000000000053 STATION-GENERIC RECORDS

PROCESS SET GEN-LOC

UNLOADING ST-LOCATION FROM AREA MVIP-STATION

UNLOADED 000000000055 ST-LOCATION RECORDS

PROCESS SET GEN-INV

UNLOADING YR-INVENTORY FROM AREA MVIP-STATION

UNLOADED 000000000072 YR-INVENTORY RECORDS

UNLOAD COMPLETED

UNLOADED 000000000001 EMISSIONS RECORDS

UNLOADED 000000000053 STATION-GENERIC RECORDS

UNLOADED 000000000055 ST-LOCATION RECORDS

UNLOADED 000000000072 YR-INVENTORY RECORDS

End MVIP Unload Programs at Wednesday February 18 15:40:03 EST 2004

The sample runstream for this would look something like this -

(SUNFIRE1:/home1/davids)1245 $ cat unload.sunfire1.mvip

#!/usr/bin/ksh

echo Start MVIP Unload Programs at `date`

export TIPDMSLOG=

cd /home1/davids

rm -f log.* WORK*

echo Start mvipsul0 at `date`

$TIPSITE/bin/mvipsul0

echo Start mvipsul at `date`

$TIPSITE/bin/mvipsul

echo End MVIP Unload Programs at `date`

(SUNFIRE1:/home1/davids)1246 $

The files produced by running this job would be -

-rw-rw-rw- 1 1749 Feb 18 15:40 FDXREF

-rw-rw-rw- 1 3072 Feb 18 15:40 CKPTFLE.idx

-rw-rw-rw- 1 81 Feb 18 15:40 CKPTFLE

-rw-rw-rw- 1 27648 Feb 18 15:40 SET0158

-rw-rw-rw- 1 11770 Feb 18 15:40 SET0161

-rw-rw-rw- 1 11077 Feb 18 15:40 FD0158

-rw-rw-rw- 1 24 Feb 18 15:40 FD0157

-rw-rw-rw- 1 373 Feb 18 15:40 log.MVIP-SCHEMA.5144

